IMPROVING DATA COLLECTION, STORAGE, HANDLING, VISUALIZATION, AND ANALYSES FOR MICRONESIA’S CORAL REEF MONITORING PROGRAMS

A guidebook with step-by-step exercises using regional datasets to improve local capacity for data interpretation.

Dr. Peter Houk

www.pacmares.com
Table of Contents

Introduction: .. i

Section 1 – Database generation, manipulation, and query investigation ... 1

 Exercise 1 – Establishing a database .. 1

 Exercise 2 – Manipulating, Managing, Working with, and Visualizing a Database ... 11

 Exercise 3 – Advanced queries into a large, multivariate dataset to understand ecological patterns pertinent for management actions 27

 Exercise 4 – Beyond examining trends. Reformattting an existing database to understand statistical aspects of the data 37

Section 2 - Univariate Statistics and graphing the results ... 51

 Exercise 5 – Simple calculations of statistical power for influential, dependent variables .. 51

 Exercise 6.1 – An introduction to creating report-quality graphs and preparing data for univariate statistical analyses 63

 Exercise 6.2 – Conducting basic univariate statistical analyses and producing informative, professional quality graphs to show your trends 74

Section 3 – Multivariate statistics and graphing the results .. 91

 Exercise 7 – An introduction to multivariate data considerations, PRIMER-E, and PERMANOVA+ .. 91

 Exercise 8 – A multivariate, statistical examination of Pohnpei’s Marine Protected Areas using PRIMER-E and PERMANOVA+ 122
Introduction:

Statistically-sound science is required to assess the status of regional and local management efforts ranging from community-based marine protected areas to expansive regional networks defined by the Micronesian Challenge. Despite having common goals of protecting their resources for future generations, jurisdictions throughout Micronesia strongly differ in their approach used to monitor coral reefs, and thus, in the information that is available for managers to act upon. This is, in part, due to unequal funding and capacity distributed throughout the region. As of 2009, monitoring throughout Micronesia ranged from reef-check surveys conducted by governmental and recreational divers in Kosrae, to seven-year programs supporting multiple trained biologists in the Commonwealth of the Northern Mariana Islands and Palau. Accordingly the questions being answered, statistical power to detect change, and the precision of the data differ considerably (Houk and van Woesik, 2006; Houk 2009; Waddell and Clarke, 2008).

Recently, the 5 political jurisdictions of Micronesia have begun to address these issues, under the framework of the Micronesia Challenge. In June 2008, the newly formed MC Measures Working Group identified the need to develop an appropriate framework to assist monitoring programs in each of the jurisdictions to track their progress both locally and regionally in effectively managing their resources for sustainable use. Spawning from the goals set forth by the MC Measures Working Group collaborations between the Pacific Marine Resources Institute (PMRI), Dr. Peter Houk, and jurisdictional monitoring programs were conducted to evaluate the status of existing datasets in 2009. This effort initiated positive, continued collaborations for enhanced scientific oversight of monitoring activities with numerous regional partners and scientists.

Building upon a scientific foundation to match management goals with monitoring activities, key recommendations were made to initiate a standardized monitoring approach for the MC, and beyond (Houk 2009). These designs and methods were tested in each jurisdiction, and shown to address many pressing management concerns with adequate statistical considerations. Since 2009, data has been collected using the updated techniques, and now exists. However, these data are not being thoroughly examined and reported on because, generally, the scientific expertise needed to digest the collected data for management has not yet been well developed within local programs. This forms the basis for the current proposal.

Here, we proposed to conduct hands on training workshop using a step-by-step data analyses and graphing guidebook, recently funded by NOAA PIMPAC, and currently under development. This guidebook is being developed using regional data collected during FY 09 collaborations between PMRI and FSM/RMI coral monitoring programs. This proposal aims to bring key users of datasets from each FSM and RMI jurisdiction together for a “hands on” workshop to evaluate their data, and learn how to efficiently visualize and, when appropriate, test for significance. Additionally, this proposal would teach participants how to utilize the developing Micronesian Challenge database; inputting and extracting datasets to quickly understand current trends. The guidebook is being produced using four major software platforms: Microsoft Excel, Access, PRIMER-E, and Sigma Plot. Here, the budget describes costs for technical and logistical preparations necessary for the workshop, one software package, and limited travel for participants. It is noted that remaining software and travel budget required will come from the FSM monitoring grant, and other funding sources, recently awarded.
Section 1 – Database generation, manipulation, and query investigation

Exercise 1 – Establishing a database

The initial establishment of a database can often seem like a daunting task for us. Consider that a wealth of information is typically required, or at least desired, and all of that information resides with multiple people or agencies. However, Micronesia’s coral monitoring programs are often limited in personnel and capacity, so learning to do the best possible job with the resources at hand is a logical outcome. There is no one right way to format a database, several different approaches can lead to similar outcomes. However, some basic rules do apply. When deciding upon how to format a database the first question that one should ask is what is being measured and what is the unit of replication. Two examples below will show different approaches.

Example 1 – Macroinvertebrate data collection from Chuuk Rapid Ecological Surveys

Rapid ecological assessments were conducted in Chuuk during August-September 2008. In this example we will build a desirable Microsoft Excel database to store the quantitative macroinvertebrate estimates that were made.

1. Open Excel
2. Select and open the file “Chuuk-REA-invert-database” from the example file directory on your computer.
3. Click on the first sheet “Brainstorm metadata fields” to understand the nature of data collection.

Data were collected from 8 islands among a variety of reef types and wave exposures. At each site surveyed, two depths were examined for macroinvertebrate abundances along 5 transects. A transect consisted of a 5-minute timed swim. The observer recorded all conspicuous macroinvertebrates that were observed. No size data were collected, just counts. From the “Brainstorm metadata fields” sheet you can get an idea of the sampling scheme. This is a logical first step in creating a database, to generate a ‘brainstorm’ or relevant metadata fields sheet that breaks down how sampling was conducted.

4. Click on the next tab “Metadata”.

Here a list of all sites surveyed was populated while surveys were being conducted. Location information exists as well as site characteristics. Armed with this information laid out in this manner, were ready to begin building our database.
5. Click on the next tab “Database-build”.

Notice that the metadata headings from the earlier sheets are copied over already. We need to populate them, and reduce the chance of data entry error.

6. Click on the “Data” tab on the main menu of excel – up top.
7. Click on the entire “A” column above the word “Island” – see below

![Excel screenshot with column labeled Island and other columns labeled Wave exposure, Depth, Site, Transect #, GPS x]

8. Now under the excel sub-menu “Data Tools” click on “Data Validation”
 a) The menu below should pop-up. Click on the “Settings” tab.
 b) Then for validation criteria, scroll down until you find the “List”.

![Data Validation dialog box with options for validation criteria]
9. Now you should see a "Source" field open up, where you want to provide the selective criteria for entering data into these cells (i.e., the island names where data was collected from).
 a) **Type** in exactly what is seen below.

![Image of Data Validation settings]

10. **Click** OK

This code logically refers Excel to the sheet named “Brainstorm metadata fields”, and says the all possible islands where data were collected from are located in cells A2:A9. Verify that for yourself. *(Note: When doing this, it is very desirable to have scratch paper for taking informal notes to assist you with entering source codes and functions into excel.)*

11. **Click** in cell A2 and notice there is a dropdown arrow on the right hand side.
 a) **Click** the dropdown arrow and notice the list of islands appears where data were collected from.

![Image of dropdown arrow]

 b) **Choose** any island name for now.
 c) **Click** in cell A3, do the same. **Populate** cells down to A10.
12. Do the same for the next column “Reef type”
 a) **Click** on the column “B” on top of “Reef type”
 b) **Type** the below code into the empty “Source” box.

\[=\text{Brainstorm metadata fields!'B2:B$5}\]

13. Again, verify yourself why cells B2:B5 are chosen by examining the “Brainstorm metadata fields”
Populate cells B2:B10 with values of your choosing.
14. Do the same for the next column “Wave exposure” and “Depth”
 a) Fill in columns with values of your choosing.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Island</td>
<td>Reef type</td>
<td>Wave exposure</td>
<td>Depth</td>
<td>Site</td>
<td>Transect #</td>
<td>GPS x</td>
</tr>
<tr>
<td>2</td>
<td>Chuuk</td>
<td>Channel</td>
<td>Low</td>
<td>3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Chuuk</td>
<td>Inner</td>
<td>Moderate</td>
<td>3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chuuk</td>
<td>Inner barrier</td>
<td>Low</td>
<td>3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Etal</td>
<td>Outer barrier</td>
<td>Sheltered</td>
<td>3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Losap</td>
<td>Outer barrier</td>
<td>Moderate</td>
<td>3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Losap</td>
<td>Channel</td>
<td>High</td>
<td>10m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Murilo</td>
<td>Inner barrier</td>
<td>Low</td>
<td>10m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Etal</td>
<td>Channel</td>
<td>Moderate</td>
<td>10m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Chuuk</td>
<td>Inner</td>
<td>Moderate</td>
<td>10m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Now, do the same for the “Site” column, but change the source as follows

Note that we reference a different sheet, the “Metadata” sheet now.

a) Click on that sheet and verify why A2:A57 were selected.

b) Populate the database with values of your choosing.
16. Now for the next column “Transect #:” we can again do the list function, or we can simply write the numbers 1 – 5. You choose and populate the cells.

<table>
<thead>
<tr>
<th>Island</th>
<th>Reef type</th>
<th>Wave exposure</th>
<th>Depth</th>
<th>Site</th>
<th>Transect #</th>
<th>GPS X</th>
<th>GPS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuuk</td>
<td>Channel</td>
<td>Low</td>
<td>3m</td>
<td>C-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuuk</td>
<td>Inner</td>
<td>Moderate</td>
<td>3m</td>
<td>C-11</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuuk</td>
<td>Inner barrier</td>
<td>Low</td>
<td>3m</td>
<td>C-13</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etal</td>
<td>Outer barrier</td>
<td>Sheltered</td>
<td>3m</td>
<td>C-14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losap</td>
<td>Outer barrier</td>
<td>Moderate</td>
<td>3m</td>
<td>C-13</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losap</td>
<td>Channel</td>
<td>High</td>
<td>10m</td>
<td>C-14</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murilo</td>
<td>Inner barrier</td>
<td>Low</td>
<td>10m</td>
<td>C-16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etal</td>
<td>Channel</td>
<td>Moderate</td>
<td>10m</td>
<td>M-4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuuk</td>
<td>Inner</td>
<td>Moderate</td>
<td>10m</td>
<td>M-9</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now for the fields “GPS X” and “GPS Y” we will use a “lookup” function because there are too many numbers in the GPS coordinates to try and process through a dropdown list.

17. Click on cell G2
 a) Type the following in the function toolbar:

 \[\text{=LOOKUP(E2,Metadata!A2:A57,Metadata!C2:C57)} \]

 The “lookup” function first asks for the reference cell value upon which the lookup will occur, in this case it is cell E2, or the “site”. Next, you have to provide a list of all possible sites for excel to look up, in this case the list is found on the “Metadata” sheet, columns B and C are the X and Y coordinates (i.e., lat and long) for each site. Now, you do this for the GPS Y, or latitude, coordinate.
Note: It is important to note that the “$” in the cell formula means for Excel to keep the exact cells when conducting the functions. Without them, the references for the lookup values would change when we cut and paste into cells below to automatically populate our database.

18. Get a scratch paper out, click on the “Metadata” sheet, and note which cells that contain GPS Y coordinates you are interested in, and the site names associated.
 a) The relevant information to write are the site names that will be looked up (A2:A57, on the “Metadata sheet”), and the valued you want inserted, GPS Y (B2:B57).

19. Go back to our “Database-build” sheet and highlight the first cell you want to populate with the “lookup” function for GPS Y, or latitude. This is cell H2.
 a) Once highlighted, enter the appropriate formula: =lookup(E2, Metadata!A2:A57, Metadata!B2:B57)

Note: we do not want and $ near the E2 because that is dynamic, and we want to drag our formula to autofill the cells below. However, $ to appear for all lookup list values on the “Metadata” sheet. These will never change.

b) Your database should now look like below.

20. Fill in your GPS data for all other sites.

21. Highlight the G2 and H2 cells together and copy the contents, press the “Ctrl + C”.

![Excel spreadsheet screenshot]
22. **Scroll** down to cell G3 and paste the formula, “`Ctrl + V`”.
 a) **Fill** all the way down to G10.

Your database should look like below.

```
<table>
<thead>
<tr>
<th>Island</th>
<th>Reef type</th>
<th>Wave exposure</th>
<th>Depth</th>
<th>Site</th>
<th>Transect #</th>
<th>GPS x</th>
<th>GPS y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuuk</td>
<td>Channel</td>
<td>Low</td>
<td>3m</td>
<td>C-1</td>
<td>1</td>
<td>151.8706333</td>
<td>7.429866667</td>
</tr>
<tr>
<td>Chuuk</td>
<td>Inner</td>
<td>Moderate</td>
<td>3m</td>
<td>C-11</td>
<td>1</td>
<td>151.788</td>
<td>7.399016667</td>
</tr>
<tr>
<td>Chuuk</td>
<td>Inner</td>
<td>Low</td>
<td>3m</td>
<td>C-13</td>
<td>2</td>
<td>151.5917333</td>
<td>7.47655</td>
</tr>
<tr>
<td>Etal</td>
<td>Outer barrier</td>
<td>Sheltered</td>
<td>3m</td>
<td>C-14</td>
<td>2</td>
<td>151.58505</td>
<td>7.4684</td>
</tr>
<tr>
<td>Losap</td>
<td>Outer barrier</td>
<td>Moderate</td>
<td>3m</td>
<td>C-13</td>
<td>3</td>
<td>151.5917333</td>
<td>7.47655</td>
</tr>
<tr>
<td>Losap</td>
<td>Channel</td>
<td>High</td>
<td>10m</td>
<td>C-14</td>
<td>3</td>
<td>151.58505</td>
<td>7.4684</td>
</tr>
<tr>
<td>Murilo</td>
<td>Inner barrier</td>
<td>Low</td>
<td>10m</td>
<td>C-16</td>
<td>4</td>
<td>151.4476667</td>
<td>7.396533333</td>
</tr>
<tr>
<td>Etal</td>
<td>Channel</td>
<td>Moderate</td>
<td>10m</td>
<td>M-4</td>
<td>4</td>
<td>153.7878667</td>
<td>5.531483333</td>
</tr>
<tr>
<td>Chuuk</td>
<td>Inner</td>
<td>Moderate</td>
<td>10m</td>
<td>M-9</td>
<td>5</td>
<td><strong>153.5405833</strong></td>
<td>5.404633333</td>
</tr>
</tbody>
</table>
```

Now, we have everything in order, we are ready to formalize our database into an Excel “**list**” function.

23. **Highlight** all cells where data exists, A1 to H10.
 a) **Click** on the “**Insert**” main tab for Excel, on the sub-menu **click** on “**table**”.

You should have a dialog box appear as below.
b) Make sure the box for “My table has headers” is checked, and click OK.

24. Click in cell A11.
 a) Select any island of your like from the drop down menu.

25. Do the same with “reef type”, “wave exposure”, “depth”, “site”, and “transect name”.

Note: GPS data is automatically entered for you. This is because of our lookup table.

Time to enter our ecological survey data of the macroinvertebrate abundances. There are two approaches commonly used. The first is especially relevant for count data that has been collected without individual sizes, such as counting the numbers of sea cucumbers but not measuring the length of each one.

 a) Type in the name of one common sea cucumber, *Holothuria atra*, then push enter.

Note: excel automatically extends your “list” to include column I.

27. Enter numbers of sea cucumbers encountered for each transect surveyed. You can just enter values of your choosing.
It is very straightforward how to continue to enter data in this manner, one can keep on adding species in the columns to the right of the Excel “list”.

Finish exercise 1, save your Excel file for future reference.
Exercise 2 – Manipulating, Managing, Working with, and Visualizing a Database

1. Open the file “Chuuk-REA-invert-database-complete”.
 a. Click on the sheet “Database-build”.

 Here, you will find the same database we just built, however, now it is populated with 520 transects of macroinvertebrate data abundance estimates that were collected during the Chuuk REA. Examine the database, especially look at the organization. The data are sorted by Island, Site, and Depth. You can re-sort the data by using the column headers, and clicking on the dropdown arrow next to the column heading.

2. Click on cell K2 “Tridacna spp.”.
 a. Sort from “largest to smallest”.

 ![Database Image]
You can get a general understanding this way, for instance, that the atolls hold more large clams (grouped as Tridacna spp.), as compared with Chuuk. And, in particular, Kuop seems to appear many times at the top of the list.

3. Now, do the same sorting for the common sea cucumber *Holothuria atra*.

Which island consistently holds the greatest abundance of this common sea cucumber?

Let's return the database back to its original form.

4. Click on the “Depth”
 a. Sort “smallest to largest”.
5. Click on site
 b. Sort “A to Z”.
6. Click on “Island”
 c. Sort “A to Z”.

You can notice this is exactly how the database looked when we first opened it.

Now, we will add some additive, summary columns that will help us to better visualize our results. Notice that columns I, J, and K all refer to “clams”. Let's add a column to help summarize the abundance of all clams together.

7. Click on column L “Crinoids”, right after the last column with clam names.
8. Right click the mouse and select “insert”.

Notice a new column appears called “Column 1”.

- a. Change the name to “Clam Total”.
9. Now, highlight cell L2. Write “=sum(” (to conduct an automated sum function in excel.)
 b. Click on the cell L2, place a comma(,).
 c. Click on J2, add another comma,
 d. Click on K2, finish with a closed parenthesis “).”
 e. Press enter.

Excel fills in a sum function for the entire database automatically. This column is now the total abundance of all three clam categories, and can be used as a summary.

Next, we will do the same for sea cucumbers. Column AB has the name of the last sea cucumber, “Thelonota anax”.

10. Click on the next column, AC, and right click, and again “insert”.
 a. Name this Sea Cucumber Total.
11. Do the sum function for excel, ensure that all sea cucumbers are included, columns P through AC.
(Note: Instead of clicking individual cells, you can drag the excel cursor across all cells if you like.)

Your spreadsheet should look like below.

<table>
<thead>
<tr>
<th>A1</th>
<th>Y</th>
<th>Z</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stichopus chloronotus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Stichopus hermanni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Thelenota ananas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Thelenota anax</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Sea Cucumber Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Echinaster luzoninus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Acanthaster planci</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Cukta novagaeana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Linckia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

12. Repeat process for:
 a. **Seastars** – Columns AD through AH contain names of seastars
 b. **Grazing urchins** - Columns AJ and AK contain grazing urchins.

13. Repeat process for **edible shells** too. *(Note: Here, you can just click in the cell AP1 and type “Edible Shell Total”)*
a. Do the same *sum function*.
b. See below for confirmation.

![Excel spreadsheet image]
That ends our basic database manipulation, you can review the steps and logically think of other ways to do similar things.

Now, we will begin to visualize the dataset using **Excel’s Pivot Table**.
In order to set up a Pivot Table, you first need to highlight the cells that define the table.

14. To the upper left of cell **A1**, there is a small box with a **diagonal arrow**.
 a. **Click** on that **box** *(all cells in the database are automatically highlighted)*
 b. **Click** on the **“Insert Tab”** of Excel’s main menu, and
 c. **Click** on **Pivot Table**.
 d. The **table/range** should match, and ensure that “**New Worksheet**” is selected.
 e. **Click OK.**
A new sheet (see below) should be created between “Metadata” and “Database-build” that is called “Sheet 1”. You can right click and rename it to “Chuuk REA Invert Pivot”. Click back inside the “Pivot table area” in the upper left. With Pivot Table you can make summary tables and graphs easily and quickly. The first thing we will do is take a simple look at sea cucumber abundances by island.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

15. Click and Drag the “Island” Box from the “Pivot Table Field list” on the right and place it down in the “Row Labels”.
16. Click and Drag “Sea Cucumber Total” box from the “Pivot table field list” (hint, you need to scroll down to find it), and place it under “values”
17. Click one time on the “Count of Sea Cucumber Total” box under values, a sub-menu should pop-up.
 a. Click on the “Value Field Setting” - Notice count is selected, but we want to examine average values found on each transect.
b. Click on “Average”.

c. See below for a confirmation of these steps

Let's also view the standard deviations to understand how the data was spread among the surveyed transects.

18. Click and drag the “Sea Cucumber Total” box from on top below the existing “Average of Sea Cucumber” in Values.
 a. Click the new “Count of Sea Cucumber Total” box and again choose “Value Field Setting”.
 b. Scroll down on the pop-up menu and choose “StdDev”.

Now you have averages and standard deviations side by side, let view this graphically.
19. Click on any cell in the **Pivot Table (the new data table on the upper left of the sheet)**

a. Click on the “**Insert**” main menu tab in Excel. (You can see a lot of options here, we want to look at simple “Column” charts)

b. Click on “**Column**”, and select the “**first graph option**” in the top left.

Let’s move the chart to a new sheet for simplicity.

20. **Right click** in the chart and select “**Move Chart**.”
21. Select “New Sheet” and rename the chart “Chuuk REA Invert Summary”.

A new sheet is created and our desired summary is easily seen and understood.
Now, we can take a moment to reflect upon what the data is telling us. First, on average, there was no site surveyed in Chuuk that had more than 4 sea cucumbers per 5-minute swim, a very low value compared with other REA reports conducted in similar habitats and depths. Second, Chuuk has the greatest abundance of sea cucumbers, a consequence of the high islands located in Chuuk Lagoon, providing suspended particulate matter to the lagoon through the deposition of terrestrial organic matter. These trends are expected. Third, the outer islands all have very low abundances; in fact at some none were recorded. Fourth, in all instances the standard deviation is greater than the average. This informs us right away that our statistical power to detect change over time in sea cucumber abundances is low for the entire island level. However, our goals are to understand change at the individual site level. So we will see how the data improve our understanding of the distribution of sea cucumbers around Chuuk only.

Notice you can manipulate the Pivot Table in chart mode with Excel as well as table mode. These next steps could be done on the “Chuuk REA Invert Summary” graph sheet, or the “Chuuk REA Invert Pivot” table sheet. Keep on the graph sheet for now.

22. Under the “PivotChart Filter Pane” window click on the drop down menu for “Island”.
 a. Uncheck all islands except for Chuuk.
 b. On the “PivotTable field list” drag “Site” and “Depth” below “Island”.
 c. Confirm below.
The first thing we notice is that our standard deviations are greatly reduced when examining data at the site level, suggesting our survey goals of detecting change at the site level are better approached. However, they are still higher than desired for many sites. We will touch back on that later.

23. **Remove** the “StdDev of Sea Cucumber Total” box from **Values**.
 a. **Click** and **drag** it back up from where you initially grabbed it.

24. Back on the “PivotChart Filter Pane” window **click** on the drop down menu for “**Depth**” and leave only the 3m depth highlighted.

25. **Confirm** below.
Three sites seem to stand out as holding relatively high abundances of sea cucumbers for Chuuk, these are C-5, C-15, and C-11. Look at the map below to understand where those sites are.

Not surprising the highest abundances were found on Chuuk’s inner reefs, adjacent to islands of varying population, land-use, and other physical attributes. However many similar inner reefs were surveyed, and why do the abundances vary among them. Let’s look closer.
26. From the “PivotTable Field List”
 a. Click and drag the “Reef type” box below the “Island”, but on top of the “Site” and “Depth” boxes.
 b. Confirm below.

We can now easily see that sea cucumbers are preferably found on the inner reefs as expected, but why is there so much variation among inner reef sites?

27. Go to the drop down menu for the “Reef type” filter pane, check only “inner”.

Nine sites are left on our graph, again you can refer to the map above to understand which inner reefs have the highest abundances of sea cucumber resources. Our final step here will be to investigate the quality of our data collection (i.e., if we re-do the surveys do we have statistical confidence to detect a change, especially at the sites where resources are good).
28. On the “PivotTable Field List”
 a. Click and drag the “Sea Cucumber Total” again down to the “Values” box, below “Average of Sea Cucumber Total”.
 b. Left click the box one time, click on “Value Field Settings”
 c. Set to “StdDev”.
 d. Confirm below.
We can also look at the 10m depth and find similar patterns, however abundances typically decrease with depth, can you find the site with an exception to this pattern?

In two out of three of the sites where sea cucumbers were most abundant our standard deviation is less than half of our average, or mean. While any coral reef manager would like lower standard deviation bars, this is a satisfactory situation. How do our findings translate to future next steps and potential management actions?

First, one commonly applied rule for management is to protect the locations where good resources exist. It would be insightful to understand why C-5, C-15, and C-11 hold high resource abundances. The two probable causes attributable to patterns are: 1) differing natural environments, or 2) human harvesting trends. This is where scientists and monitoring teams present findings to communities and knowledgeable individuals to learn, and plan for management accordingly. If we can understand what conditions lead to high sea cucumber populations than we can identify and prioritize management actions that should be efficient.

Second, long-term monitoring focused on sea cucumbers for Chuuk seems best focused upon “inner” reefs. People in charge of continued monitoring programs might design, or re-design, annual ecological surveys accordingly. It seems less appropriate to randomly survey all reef habitats in Chuuk, however, like any dataset, the REA data doesn’t tell the whole story. For example, the outer reef flats were not surveyed and typically hold high sea cucumber populations, but usually of only a few species.

End of Exercise 2
Exercise 3 – Advanced queries into a large, multivariate dataset to understand ecological patterns pertinent for management actions.

1. **Open** the file “Pohnpei-MPA-fish-transects”.

 Notice there are two sheets that are populated with data and site information.

2. **Click** on the sheet “*Site information*”.

 This sheet contains a list of all MPA monitoring locations for Pohnpei’s program, MPA status, reef-type, indicator fish species, and two coefficients that are used to estimate biomass from length estimates.

3. **Click** on the next sheet “*PNP Fish Database*”

 You can see a dataset for Pohnpei’s 2006 indicator fish monitoring efforts. First notice the design of the database is different from the Chuuk REA database. Here, each row represents one individual fish on any particular transect, at any particular site. With the Chuuk REA data each row represented one transect.

 Take time to notice the column headings and how the drop down menu’s and lookup functions were created.

4. **Do this by clicking** in cells A2 across, and understand how each function works.

 The formula for fish biomass comes from published studies and each species coefficients comes from a website called “FishBase”, a global initiative to improve our understanding and science surrounding fish and fisheries (www.fishbase.org).

 We are going to be manipulating this database to understand trends in MPA success. In the case of any master database no data queries or graphing should be conducted using the same file as the original database.
5. First do a “save as” and name the file “Pohnpei-MPA-fish-transects-exercise”, or any other name of your choosing.

6. Highlight all of the data and again insert a Pivot Table like before.
 a. Change the name of the sheet to “PNP fish pivot”
b. **Click** ok in the dialog box.

We will first take a look at all MPA’s grouped together, not yet taking into account statistical sampling concerns like standard deviations and confidence intervals surrounding our data.

**7. Click and drag the “MPA” box and put in under “Row Labels”.*
 a. Put “Species” under “Column labels”
 b. Put “Biomass” under “Values”.
 c. **Left click** the “Count of Biomass” box once and **change** the field settings to “average”.
 d. Confirm below.*
8. Go to the "Insert" tab off the main menu of Excel and **insert** a column chart,
 a. **Choose** the **stacked column chart** one showing cumulative data summaries.
b. **Right click** in the chart area and **move** this chart to its own sheet.

c. **Name** the sheet “**PNP fish pivot chart**”.

d. **Confirm below.**

9. **Click** on the “**MPA**” drop down menu in the PivotChart Filter Pane,
a. Uncheck the “blank” box if it happens to be selected, if not you don’t need to do anything.

This initial chart seems like positive news, on average there is a greater biomass of just about every indicator species inside of the MPA’s compared with outside. However, there is a lot more to consider before coming to that conclusion so we should continue our investigation.

10. Click and drag the “Reef type” box and drag it into the fields box, putting it above “MPA”.

Now we can clearly see that inner reef MPA’s are protecting a much larger proportion of the biomass as compared with outer reefs. Specifically, Caranx melampygus (jack) and Hipposcarus longiceps (parrotfish) are two fish that seem to be influential drivers of this trend. Are these differences in success based upon reef type due to proximity of human populations that help maintain and enforce the MPA? Are they due to natural differences in habitat types, whereby outer reefs are harder to access so differences are less
pronounced? We must be clear that we can’t answer these questions with our existing data, but we can continue to learn about patterns so we know how to most efficiently learn about cause.

Let’s focus more on understanding patterns for the “inner” reefs as they seem most influential.

11. On the PivotChart Filter Pane, click the drop down menu next to "Reef type", and leave only inner reefs checked.
 a. Click the “SampleID” box and drag it below “MPA” in the Axis Fields box.
 b. Go back to the PivotChart Filter Pane and go to the drop down menu for “SampleID”.
 c. Check only the boxes for “DI1”, “DI2”, “DO1”, and “DO2”.

This means that we are going to look at data from the MPA with nickname “D” and the sites surveyed “I” inside and “O” outside the MPA. The “1” and “2” refer to site replicates within which 5 x 50m transects were surveyed. Indeed, a nice survey design, methods, and dataset. Confirm below.
These results contradict our earlier finding of success for MPA’s in general. For this MPA we see there appear to be more fish outside the MPA compared with inside. Check to agree that these trends are especially pronounced for Chlorurus microrhinos and Naso unicornis at the “DO1” site, outside the MPA.

Note: You can hover over any part of the data bar and Excel should automatically tell you what fish species each color represents. Confirm below if it is not clear.

Let’s look at the next MPA.

12. Go back to the PivotChart Filter Pane and
 a. Go to the drop down menu for “SampleID”.
 b. Check only the boxes for “KI1”, “KI2”, “KO1”, and “KO2”. This means that we are going to look at data from the MPA with nickname “K” now.
The results again clearly show no substantial benefits of the “K” MPA site.

Let’s continue because we know the overall trends suggested MPA’s were working on the whole.

13. Go back to the PivotChart Filter Pane
 a. Go to the drop down menu for “SampleID”.
 b. Check only the boxes for “LI1”, “LI2”, “LO1”, and “LO2”.

Now we can easily see the perceived success of this MPA compared with others.
You can do the same examinations for MPA’s “M” and “N”. You can confirm below for MPA N.
We have learned a great deal from our investigations thus far. First, for inner reefs, MPA’s “D” and “K” do not seem successful as compared with all other three. Second, by far, the most success seems to be found at MPA “L”. Third, although team Pohnpei monitors 16 indicator fish, trends are most influentially delineated by only a few fish. Namely, these are Chlorurus microrhinos, Hipposcarus longiceps, Caranx melampygus, Naso unicornis, and maybe one or two others. This is understandable because these are relatively large fish that make up a high proportion of Pohnpei’s fish market catch. It in very interesting to learn that fewer fish may be able to serve as statistically useful indicators for MPA success, and these are common with local names that are well known.

End of Exercise 3, save the file, and keep it open. This same file will be used for Exercise 4.
Exercise 4 – Beyond examining trends. Reformatting an existing database to understand statistical aspects of the data.

While we have successfully visualized trends regarding fish assemblages from Pohnpei’s MPA dataset in Exercise 3, will now take a look at the statistical confidence of these data, as we have yet to view any error bars that describe consistencies among transects and sites. Because the original database was generated by placing each individual fish measurement in its own row with lots of metadata, we will need to re-format the dataset to generate summaries at the transect-level. Recall, the transect is our unit of replication within each site. It is good to understand the functional differences for different database formats, take a moment to reflect.

Programs like Excel make it relatively easy to switch formats in a short time frame.

1. First, go back to our “PNP fish pivot” worksheet.
2. Under “Row Labels” click and drag the boxes for “MPA” and “Reef type” out.
3. Click and drag “Replicate” and put it under “SampleID”.
 a. Under values, left click once on “Average of Biomass”, and change the attribute field to “Sum”.
 b. Confirm below.
Now we have a spreadsheet with each replicate transect as a row, and a total amount of fish biomass recorded on each transect (hence the sum instead of average function). This is exactly what we need to examine transect-level replication, total sums of biomass for each species along each transect.

4. **Right click** anywhere in the table and go to “**Pivot Table Options**”.
 a. Make sure the “**Layout&Format**” tab is selected and put a “0” in the box next to “**For empty cells show**.”

5. **Click** on the “**Totals&Filters**” tab.
 a. **Uncheck** the boxes for “**Show grand totals**”, both of them.

6. **Click** on the “**Display**” tab.
 a. **Check** the box that says “**Classic Pivot Table layout**”

7. **Click** OK to close the dialog box.

8. Confirm below.
9. Click on cell A4, on the pivot table.
 a. Right click and choose “Field Settings”
 b. Under “Subtotals” click none.
 c. Click OK to close the dialog box.

Now we want to re-add the “MPA” and “Reef type” information in our table.

10. Click and drag these boxes and put them under “Replicate”.
11. Click on cell B4, again choose “Field Settings”
 a. Under “Subtotals” click none.
 b. Click OK to close the dialog box.
12. Click on cell C4, again choose “Field Settings”,
a. Under “Subtotals” click none.
b. Click OK to close the dialog box.

13. Confirm below.

Note: This is the layout of the table we want to export for further investigation.

Note: It’s a good idea to save your work at this point.

14. Check the drop down menus for “SampleID”, “Replicate”, “MPA”, and “Reef type” (these are cells A4, B4, C4, and D4)

Note: Make sure no filters are on and all boxes have a green check mark.

15. Click anywhere inside the pivot table
a. Press the Ctrl + A buttons on the keyboard to select all the data.
b. Right click again and select “copy”.

16. Click the Excel worksheet named “Sheet 1”.
a. Click in cell A1.
b. Right click and select “Paste Special”
c. Select “Values”
d. Click OK.
e. Confirm below.

You should now have a new formatted sheet. Confirm below.
17. Rename this sheet from "Sheet 1" to "PNP Fish Data by Transect".
18. Delete “Row 1”
 a. Highlight the rest of the data (**Ctrl** + **A**)

19. Go to the insert tab from Excel’s main menu, and choose “Table”.

20. Click OK

21. Confirm below.

You should have a new database generated that shows fish abundances by transects now. There is only one problem left, for each site ("SampleID") there is only one label with four blank boxes below. We need to fill in the blank boxes below each site label.

Unfortunately, there is no automated, easy process to do this, but Excel has some helpful functions to reduce the time required.

22. Highlight cells **A2:A6**
23. Go to the “Home” tab on Excel’s main menu
 a. Click on the drop down box named “Fill”.
 b. Choose the first option “Down”. (Notice Excel fills the boxes with the same site label “DI1”)
 c. Confirm below.

![Excel screenshot](Image)

24. Do the same for all other sites.

25. Highlight cells A7:A11
 a. Go to the “Fill” drop down menu and select “down”.
 b. Keep on doing this until you fill in all blank boxes on the database.

Tip: Another trick you can use from the keyboard is to click on the first cell with the site name, press Ctrl + C, then move down to the blank cell and press Ctrl + V. This cut and paste works as well.

When finished confirm you completed data table below.
We are now ready to begin examining our statistical confidence.

26. Click anywhere in the table then press **Ctrl + A** to highlight all the data.
27. Insert a new *Pivot Table*, and name it “**Pivot PNP Fish by Transect**”.

Exercise 4

Managing and Using Data - Guidebook
a. Click and drag the “Sample ID” box and put it under Row Labels.

We will first look at one influential fish we found from earlier.

b. Click and drag the “Hipposcarus longiceps” box and put it under values.
c. Click and drag the exact same box, and put it under values.
d. Confirm the look of your “Values” box below.

28. Left click on the top “Sum of Hipposcarus” box
 a. Change the attributes field to Average.
29. Left click on the bottom “Sum of Hipposcarus” box
 a. Change the attributes field to StdDev.
30. Click anywhere inside the main table
31. **Insert** a basic column chart *(the one on the top left of the selection menu)*
 a. **Right click** inside the chart and **move** it into its own spreadsheet
 b. **Rename** the sheet “**Pivot Graph PNP fish transect**”.
 c. **Confirm**.

![Graph showing standard deviation for parrotfish estimates for each site]

We can clearly see that the standard deviation surrounding these parrotfish estimates for each site is higher than desired, and there is no need to proceed with calculations of statistical power (which we will do in a later exercise).

32. **Repeat** steps **26b - 30** and look at “**Naso unicornis**” *(another influential fish we examined before)*

Does the situation differ? Try a few other fish as well. Discuss conclusions.
Clearly at the individual species level there is too much variation in the data to be able to detect significant change over time with statistical confidence. However, we shouldn’t worry, fish assemblage data are naturally multivariate in nature. That is, there are many species that make up the total biomass on any given transect, and perhaps we should try to account for all of them simultaneously, rather than individually, one by one. In a later exercise we will analyze the multivariate properties of fish assemblage data. Here, we will attempt a couple last steps to see if we can utilize some properties of the univariate fish dataset.

33. Click in cell W1
 a. Name this cell “Total Biomass”. (Notice Excel automatically includes this as part of your data table, and the colors change)

34. Click in cell W2
 a. Type the following function “=sum(”,
 b. Highlight all cells in the 2nd row with a fish name on top of them. (Excel should autofill the entire column once you hit Enter)

35. Confirm.

36. Go back to the “Pivot Graph PNP fish transect” worksheet with our graph.

37. Click anywhere in the chart to activate the Pivot Chart functions.
38. **Click** on the “**Analyze**” tab in Excel’s main menu, then **click** the “**Refresh**” button.

Notice in your “PivotTable Field List” that “Total Fish Biomass” has been added.

39. **Remove** all active boxes from the “**Values**” field by **unchecking** the green marks next to any active fish name you were previously investigating.

40. **Click** and **drag** the “**MPA**” box and place it under “**SampleID**”.

41. **Click** and **drag** the “**Total Fish Biomass**” box and place it under “**Values**”.

 a. Do this twice so you have two boxes.

 b. **Change** the attributes of each to “**Average**” and “**StdDev**”.

We can clearly see that we have improved our confidence interval surrounding our data by utilizing the new field “sum of fish biomass”. In many instances the standard deviation appears to be less then 50% of the mean, and appropriate for the calculation of statistical
power. However, this trend is not universal, and our conclusion would be to also examine the multivariate properties of these datasets. Both statistical power and multivariate data analyses are approached in a later exercise.

In just a short period of time we have successfully identified island-wide trends associated with Pohnpei’s MPA network. We subsequently identified which MPA’s seem to be most successful. Finally, we re-formatted our data to understand statistical consideration of our dataset. We are armed with a logical framework and flow to create a report, power point lecture, grant application, or other type of summary that may be necessary.

42. **Save** your file for future reference, then you can close it.

End of Exercise 4.
Section 2 - Univariate Statistics and graphing the results

Exercise 5 – Simple calculations of statistical power for influential, dependent variables.

Statistical power is defined as a probability (0 to 100%) that data we collect will be able to detect a desired level of change in the abundance or density of coral, fish, or invertebrates in question. If we take just a few measurements our standard deviation will be high and our power will be low. However, when do we know enough is enough so we can balance our logistical and financial constraints with our data needs? Obviously 0% power is not desirable, but 100% is equally unattainable unless sampling effort is increased beyond realistic levels. Studies agree that power should be 70% or higher for detecting a relative 20 – 30 % change in the resource abundance in question (coral, fish, sea cucumbers, etc.). Here we will conduct some very basic power calculations using the free software R (http://www.r-project.org). Of course the topic of statistical power is well developed in the scientific literature, and references are easily attainable from the “Google Scholar” search engine. Here we will touch upon the subject for our needs of assessing data confidence.

You should have already installed the software package “R” on your computer, if you have not do so now. R is a computer language, and interface program, that allows any user to create their own “code” or instructions for data analysis and user interface. A great book to describe R, and provide you with plenty of examples is “The R Book, MJ Crawley (2007). John Wiley & Sons Inc.”. Here, we will only use one simple feature of R to generate statistical power estimates. You can navigate to (http://sekhon.berkeley.edu/stats/html/power.t.test.html) to understand the code (or package) that we will use.

We will again use Excel as a basis for our inquiries.

Open the file “Kosrae-benthic-data-example”.

Exercise 5 Managing and Using Data - Guidebook 51 | P a g e
You can see a very straightforward datasets with “Sample ID”, “Replicate”, and “Date” to define each sampling event. The remaining codes indicate benthic categories that Kosrae’s monitoring program used to collect data. These benthic data were collected using four, 20m long transect lines and noting the benthic life form at each 0.5m mark on the line. Thus, there is a total of four replicate transects with 40 benthic data points collected along each.

For our purposes we will focus on “Column L” or “HC”, which refers to hard coral cover. The numbers below are percent coverages. There are four key elements for calculating and understand statistical power:

1) standard deviations associated with your measurements,
2) required statistical power or confidence,
3) number of replicate samples you have used
4) desired absolute value of change you want to be able to detect.

If you know any of the above 3 values, the simple analyses through “R” will provide you with the calculation of the fourth.

First we will use a Pivot Table to transform the look of our data table for easier interpretation.

1. Insert a Pivot Table, call it “Kosrae-benthic-pivot”.
 a. Place “Sample_ID” under “Row labels”, and “HC” under “Values” two times.
 b. Change the attributes of one of the “HC” boxes to “Average”, and the other to “StDev”.
 c. Confirm below.
Now we have a simple table of each monitoring station with an average and standard deviation of hard coral cover. Get out our scratch paper for now, and note the sample ID and standard deviation for the first row of data, row 5.

2. Open the **R software**.
You should have a “R Console” dialog box that is ready to accept code to process your queries. The package for standard statistical power calculations comes pre-loaded in R.

3. Insert the code you learned about from the website. (power.t.test(n=4, sd=13.92, power=0.7))
We are required to provide 3 of the four items listed above, remember. So we know our sampling originated from n=4 transects, our sd=13.92 from the excel sheet, and our desired power level (or probability) will be 70% or 0.7.

4. Press Enter
5. Confirm with screen shot below.
We can see the results now very clearly. We are interested in the value for “delta” or level of change successfully detected, because we set the values for the rest.
The results suggest that given our sample size and standard deviation we are able to confidently detect a ~30% change in coral cover with statistical significance

6. **Write** the delta value (29.29) on your **scratch** paper.
7. **Go back** to Excel.

To understanding what our delta value translates into, in terms of percent change, lets put our delta value in perspective with our coral cover value.

 a. **Click** in Cell **E4** and **type** the word “**Delta**”.
b. Type in our value (29.29) below in Cell E5.

c. Click in Cell F4 and type “Percent Change Detected”.

d. Click in Cell F5 and type the following simple math formula “=(29.29/63.75)*100”.

This takes our “delta” value, divides it by the total coverage of coral, and tells us what percent change we can successfully account for with our sampling design.

e. Confirm.

Notice that only a ~46% change in coral cover can be detected from this first site with statistical confidence, however we desired to detect 30% change in coral cover.

How many replicate samples would we need to do that? Its easy to calculate.

First, recall that the average coral cover for the “FMKSA04111” site is 63.75%, and 30% of that is easily calculated as “19.13”.

<table>
<thead>
<tr>
<th>Sample_ID</th>
<th>Average of HC</th>
<th>StdDev of HC</th>
<th>Delta</th>
<th>Percent Change Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMKSA04111</td>
<td>63.75</td>
<td>13.91401091</td>
<td>29.29</td>
<td>45.94509804</td>
</tr>
<tr>
<td>FMKSA04113</td>
<td>76.25</td>
<td>17.96988221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA04115</td>
<td>60.625</td>
<td>11.96783885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA04120</td>
<td>70.625</td>
<td>7.46519028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fmksa08110</td>
<td>62.5</td>
<td>7.3598000722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA081101</td>
<td>67.5</td>
<td>9.574271078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA08112</td>
<td>61.25</td>
<td>8.539125638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA08121</td>
<td>63.75</td>
<td>5.204164999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA08116</td>
<td>70</td>
<td>9.789450104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA0814</td>
<td>56.875</td>
<td>12.47914928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA0816</td>
<td>71.875</td>
<td>18.4136483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA08161</td>
<td>76.875</td>
<td>11.43368561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA0818</td>
<td>65.626</td>
<td>17.60338548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA0819</td>
<td>63.125</td>
<td>16.37770334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA08191</td>
<td>63.75</td>
<td>10.50793351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA13113</td>
<td>36.25</td>
<td>7.772815876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMKSA13115</td>
<td>36.875</td>
<td>6.884463137</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
So, our desired “delta” value is 19.13 and now we want to find out what number of transects we need to reach our goal.

8. **Go back** to the R software.
 a. **Type** in the following code → **`power.t.test(delta=19.13, sd=13.92, power=0.7)`**
 b. **Press** Enter.
 c. **Confirm.**

Now, let’s focus on the value for “n” that was calculated for us (n=7.62). This means that to accomplish our goals we’d need to sample ~8 transects, or basically double the amount of work Kosrae had done.

But, let’s think bigger picture. We can see that several surveys were already completed, and perhaps we’d like to know, on average, how did the surveys do at accomplishing their statistical confidence goals.
9. Go back to Excel.
 a. Delete cells E5-E6 and F5-F6 for now, because we want to look at all sites combined.
 b. In Cell E5, type “Overall HC Average”
 c. In F5 type “Overall HC standard deviation”
 d. In cell E6 type “=average(B5:B28)” (this takes the overall average of HC)
 e. In cell F6 type “=average(C5:C28)” (this takes the overall mean deviation of HC)
 f. Confirm.

Now, note the overall standard deviation on your scratch paper

10. Return to the R Software.
 a. Type “power.t.test(n=4, sd=10.63, power=0.7)”
b. Confirm.

We can see that based upon all of the sites Kosrae’s team surveyed, a ~22% change is confidently detected in HC. To understanding what our delta value translates into, in terms of percent change, let’s put our delta value in perspective with our coral cover value.

11. Go back to Excel.
 a. Click in Cell G4 and write the word “Delta”.
 b. Type in our value (22.37) below in Cell G5.
 c. Click in Cell H4 and write “Percent Change Detected”.

Two-sample t test power calculation

n = 4
delta = 23.75789
sd = 10.63
sig.level = 0.05
power = 0.75
alternative = two.sided

NOTE: n is number in *each* group

> power.t.test(n=4, sd=10.63, power=0.7)

Two-sample t test power calculation

n = 4
delta = 22.37056
sd = 10.63
sig.level = 0.05
power = 0.7
alternative = two.sided

NOTE: n is number in *each* group

>
d. Click in Cell H5 and write the following simple math formula “=(22.37/60.52)*100”.

This takes our “delta” value, divides it by the mean coverage of coral, and tells us what percent change that was detected, on average, with our sampling design.

e. Confirm.

We can see that Kosrae is successfully able to detect a ~37% change in HC, should one occur, with confidence using their sampling design.

Recall that our goals were to detect a 30% change in HC.
12. **Go back** to R and calculate how many transects would be required to improve our confidence just a bit to attain these goals.

 a. Set our *delta value* to 30% of the average estimate of coral cover, (or 30% of 60.52, or 18.16)
 b. Type the following: `power.t.test(delta=18.16, sd=10.63, power=0.7)`
 c. Confirm.

You can see that with just a bit more effort (~5 transect) Kosrae could successfully meet the goals we laid out. We are finished with the current exercise. Note that we can easily substitute fish counts, abundances, biomass, algae coverage, or whatever our key ecological metric is within any survey. This exercise was intended to provide you an example to follow for making future calculations on your own.
Also keep in mind that many ecological datasets are multivariate in nature, and statistical power, by definition, only accounts for one variable. Typically, monitoring programs select one key variable, such as coral coverage or other abundant benthic organisms, to examine. The results will indicate whether or not your level of replication is sufficient, generally. This is usually a good start prior to moving into multivariate considerations of the datasets, presented below.

End of Exercise 5
Exercise 6.1 – An introduction to creating report-quality graphs and preparing data for univariate statistical analyses

So far we have been using Excel to generate our visual graphs because of the easy manipulation of data through the PivotTable and PivotChart functions. However, once we have completed our initial investigations and have decided upon the influential trends and what graphs best show them, we often desire to create professional, publication-quality graphs for our grant applications and reports. In this exercise the Sigma Plot software is introduced. This software platform is one easy approach that many research scientists use to generate professional figures and conduct basic accompanying statistical analyses. We will make a series of graphs that correspond to investigation of coral reef monitoring trends that have emerged in the Commonwealth of the Northern Mariana Islands (CNMI).

1. **Open Excel**
 a. **Open** the file “cnmi-inverts-example”.

 These are macroinvertebrate count data that were collected along 50m x 4m belt transects over the past 9 years. Each row corresponds to one individual transect. Look at the database, and the corresponding metadata sheet to understand how these data are arranged. Note that columns G and H will be explained later in this exercise, they pertain to our preliminary findings that we will go through.

 CNMI’s program has experienced several years of higher than average Acanthaster planci abundances, and associated coral damage. We will use the collected data to understand what has happened and what potential consequences and management actions are.

2. **Make a PivotTable.**
 a. **Rename** the new worksheet “CNMI-invert-pivot”.

3. **Drag “Year” under “Column Labels”**
 a. **Scroll down to “Acanthaster”** and **drag** it under “Values”.
 b. **Left click** on it and **change the “Value field setting” to “Average”**.

4. **Drag “Site”, “Date”, and “Transect” under the Row Labels, in that order.**

5. **Right click** anywhere in the **PivotTable** and
 a. **Select “Pivot Table Options”**.

6. **On the “Layout & Format” tab put a check next to the box “For empty cells show:”**
 a. **Put a “0” (zero) in the space.**
7. On the “Totals and Filters” tab uncheck “Show grand totals” for columns and rows.
8. Right click in cell “A4” and go to “Field Settings”
 a. select “None” under subtotals.
9. Repeat Step 8 for Cells “B4” and “C4”.
10. Confirm.
Our table now has the population density estimates for coral-eating starfish during each year. These are the data and proper format required for Sigma Plot to produce our desired graph.

11. **Click** on the dropdown menu for “Year” in the **PivotTable** (cell D3)
 a. **Transfer** our data year by year. *(Check only the box next to “2000” first)*
 b. **Confirm**.
We have to transfer our data on a year-by-year basis because Excel has put in “0” for all empty boxes, even if no surveys were conducted. It’s easy to do.

12. Right click on “Column D”
 a. Select “Copy”.
13. Open Sigma Plot
 a. Start a new notebook.
14. Right click on “Column 1”
 a. Choose paste.
15. Do this for all years, then confirm.
Now we can clean this up a bit before starting our graph and statistical analyses.

16. Right click on “Row 1”
 a. Choose “Delete Rows”.
 b. Delete rows 1 – 3 (so choose to delete “3” rows, starting “at row” 1)

Finally, let’s promote our years to official column titles.

17. Right click on column 1
 a. Choose “Column Titles”.
 b. Click on the promote button to move the text heading of the first column up.

Notice on your datasheet that “2000” has been promoted to a column title.

18. Click on “Next”
 a. Promote the names for columns 2-10.
 b. Close the dialog box.
We will now make headers to define our different years of data.

19. **Click** on the *first* cell under “**Column 11**”.

 a. **Type** the word “**Year**”.

20. In the cell under “Year” **type** in “**2000**”, then “**2001**” in the cell under that

 a. **Continue** until “**2009**”.

21. **Promote** “**Year**” to a column title as we just did before.

22. **Confirm**.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5000</td>
<td>0.0000</td>
<td>2000.0000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>4.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>2001.0000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2002.0000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2003.0000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2004.0000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>2005.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.5000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5000</td>
<td>0.0000</td>
<td>2006.0000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0000</td>
<td>3.5000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2007.0000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5000</td>
<td>2008.0000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2009.0000</td>
<td></td>
</tr>
</tbody>
</table>

Now we are ready to create a simple bar chart.

23. **Go to** the “**Graph**” main menu on the top

 a. **Scroll** down to “**Create Graph**”.

24. **Choose** “**Vertical Bar Chart**.”
For this example we have just a simple bar chart with error bars,

25. Choose “Simple Error Bars”.

We want the bars in our chart to represent “Column Means”, and lets make errors bars that represent “Standard Error”.

26. Choose “None” for the lower error bars (these are redundant)
 a. Click next.
27. For data format select "X Many Y".

28. In the "Data for X" choose column 11 ("Year")
 a. "Bar 1" choose "2000".
b. Repeat until you reach “Bar 10” and have highlighted “2009”.
c. Click Finish.

The initial look of the graph that is created is relatively unimpressive, but this is easy to change.

29. In the “Zoom” box on top
 a. Change the value “50%” to “100%”.

30. Click on “2D Graph 2”
 a. Change the title to “A. planci abundances in CNMI”

31. Click on “Y Data”
 a. Change this to “Average COTS observed per 100m²”.

32. Delete “X Data” and the legend below showing “Plot 1”.

33. Double click on the vertical axis numbers
a. In the “End” box change the “14” to a “1”.

b. Click OK (take a moment to look at the quality and information presented in just a few easy steps)

Sigma Plot allows you to export these graphs in raster or vector formats, to preserve high resolution images for your reports or grant applications.
We can summarize that higher than average A. planci abundances were evident in the CNMI between 2003-2006. We now wish to understand the ecological consequences of high starfish abundances in terms of our other datasets, and eventually look at recovery.

Save your work. Keep your files open as they are needed for exercise 6.2.

End of Exercise 6.1
Exercise 6.2 – Conducting basic univariate statistical analyses and producing informative, professional quality graphs to show your trends

1. Go back to our Excel file
 a. Make the main database sheet active.

 Notice column G, which is named “COTS”. Click on the drop down menu and notice there are three choices: “Before”, “During”, and “After”. These indicate that data were collected before (i.e, from 2000 – 2003), during (2003 – 2006), and after (2006 – 2009) high COTS activity.

 Also notice Column H “Impact Sites”. The predator starfish were not seen in high abundances at all sites where monitoring was conducted at. “No” indicates that no increase in COTS abundances was evident and “Yes” means high populations were recorded.

 We will explore another, more simplified format for transferring data into Sigma Plot for further graphing and analyses of CNMI’s database.

2. Go back to our PivotTable sheet.
3. Remove all “Column”, “Row”, and “Values” from the boxes on the lower right.
4. Choose “COTS” and “Impact Sites” for new row labels in that order.
 a. Drag “Acanthaster” under “Values” 3 times.
5. Left click the first “Acanthaster”
 a. Select “Field Attributes” and then select “Count”.
6. Set the second to “Average”.
7. Set the third to “StdDev”.
8. Right click on Cell “A4” (or “COTS”) and
 a. Choose “Field Settings”
 b. Check “None” under subtotals and filters.
9. Repeat previous step for “Impact Sites”.
10. Confirm
We again have data ready for Sigma Plot, in a simplified, summarized format. Sigma Plot can handle raw data or summarized, a major benefit for us. Take a moment to understand what is on our datasheet. The “Count” function in excel adds up all cases where data was collected, regardless of the value (i.e., regardless of how many COTS we saw on the transect line, Excel gives a value of 1 for every data entry). Thus, the “Count” is our sample size (n), or total number of transects that were surveyed in each category. The average and standard deviation are self explanatory.

Lets filter our data and begin to transfer to Sigma Plot. Lets first consider only the “Impact Sites” where increase COTS abundances were noted.

11. **Click** on the drop down menu next to **“Impact Sites”**
 a. Check only the “Yes” box.

12. **Highlight** all of the cells in our Pivot Table
 a. **Copy** the data.

13. **Open** (or return) **Sigma Plot**.

14. **Right click** on **“Section 1”** in the panel on the left hand side
 a. **Scroll down** to **“New”, and choose “Worksheet”**.

15. **Right click** in cell **1,1** and **choose “Paste”**.

16. **Confirm.**
17. **Right click** on *row 1*, and **delete** this entire row.
 a. **Rename** cell 1,1 from “**COTS**” to “**Time Frame**”.
 The values below indicate our time frame of observation.

18. **Right click** on *Column 1*
 a. **Choose** “**Column Titles**”

19. **Promote** the column headings to titles for all 5 columns.

20. **Confirm**.

![Image of SigmaPlot](image)

Now we need to import the data from the sites where COTS abundances showed no increases over the disturbance years.

21. In Excel **change** your “**Impact Sites**” filter to “**No**”.

22. **Copy** the entire table.

23. **Go back** to *Sigma Plot* (leave columns 6, 7, and 8 blank - for later use).
 b. **Right click** on the first cell in *Column 9* and select “**Paste**”.
 c. **Highlight** only the cells you want to include in your data starting with “**COTS**” in the upper left and “**0.2928**” in the lower left (corresponding to cells 9,2 and 13,5)

24. **Cut** (*Ctrl + X*) the **highlighted data**
 a. “Paste” them one row up (*cell 9,1*).

25. **Rename** cell 9,1 from “**COTS**” to “**Time Frame**”.
26. Right click on **Column 9**
 a. Choose “**Column Titles**”
 b. Promote the column headings to titles for all 5 columns (columns 9-13).

27. Confirm.

Based upon previous exploration of the data using Excel Pivot Tables it was determined that a simultaneous look at grazing sea urchins was most useful to understand some influential trends. We will now place the grazing urchin data alongside the COTS data.

28. Go back to Excel.
 a. Change the “**Impact Sites**” filter to “**Yes**”.
 b. Remove all “**Acanthaster**” boxes from under the “**Values**”.

29. Drag the “**Grazing Urchin Total**” box under “**Values**” **three times**
 a. Change the attributes of the first Grazing Urchin Total box to “**Count**”.
 b. Change the second to “**Average**”.
 c. Change the third to “**StdDev**”.

30. Confirm.
31. Copy the relevant data cells in Excel.

32. Return to Sigma Plot.
 a. Paste these data cells below our existing tables (choose cell 6,10)

33. Confirm.

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Impact Site</th>
<th>Count of Acanthasters</th>
<th>Average of Acanthasters</th>
<th>StdDev of Acanthasters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 After</td>
<td>Yes</td>
<td>45.0000</td>
<td>0.1556</td>
<td>0.3341</td>
</tr>
<tr>
<td>2 Before</td>
<td>Yes</td>
<td>42.0000</td>
<td>0.0714</td>
<td>0.2361</td>
</tr>
<tr>
<td>3 During</td>
<td>Yes</td>
<td>96.0000</td>
<td>1.2617</td>
<td>2.3052</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice the first two columns are the same and already are presented in columns 1 and 2.

34. Highlight just the data, from “Count of Grazing” to the number “3.0964”.
 a. Cut and paste these data under Column 6.

35. Promote the column headings to titles.
 a. Delete all unnecessary cells left below.

36. Confirm.

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Impact Site</th>
<th>Count of Acanthasters</th>
<th>Average of Acanthasters</th>
<th>StdDev of Acanthasters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 After</td>
<td>Yes</td>
<td>45.0000</td>
<td>0.1556</td>
<td>0.3341</td>
</tr>
<tr>
<td>2 Before</td>
<td>Yes</td>
<td>42.0000</td>
<td>0.0714</td>
<td>0.2361</td>
</tr>
<tr>
<td>3 During</td>
<td>Yes</td>
<td>96.0000</td>
<td>1.2617</td>
<td>2.3052</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally we get the last set of data from Excel.
37. **Go back** to our *PivotTable*
 a. **Set** the “Impact Sites” filter to “No”.

38. **Copy** and **paste** these data into Sigma Plot, all the way at the end of our existing table *(i.e., into columns 14, 15, and 16)*
 a. **Promote** the headings to titles

39. **Confirm**

<table>
<thead>
<tr>
<th>Impact Sites</th>
<th>Count of Acanthaster</th>
<th>Average of Acanthaster</th>
<th>StdDev of Acanthaster</th>
<th>StdErr of Acanthaster</th>
<th>StdDev of Grazing Urch</th>
<th>Count of Grazing Urch</th>
<th>Average of Grazing Urch</th>
<th>StdDev of Grazing Urch</th>
<th>StdErr of Grazing Urch</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>80.0000</td>
<td>0.1100</td>
<td>0.2660</td>
<td></td>
<td>45.0000</td>
<td>4.7222</td>
<td>3.2710</td>
<td></td>
<td>4.2500</td>
</tr>
<tr>
<td>Yes</td>
<td>159.0000</td>
<td>0.1132</td>
<td>0.1462</td>
<td></td>
<td>42.0000</td>
<td>4.5176</td>
<td>5.0386</td>
<td></td>
<td>7.0157</td>
</tr>
<tr>
<td>During</td>
<td>181.0000</td>
<td>0.1133</td>
<td>0.2928</td>
<td></td>
<td>99.0000</td>
<td>2.3052</td>
<td>3.0964</td>
<td></td>
<td>27.8581</td>
</tr>
</tbody>
</table>

Notice you have to use the lateral scroll bar on the bottom of the screen now as your data exceeds a typical screen view. *In the screen shot above scrolling to the right was needed. The highlighted cells show the last data we just brought over.*

The last step before proceeding to making graphs is to transform our standard deviations to standard errors that are commonly used for graphical representations of our datasets and understanding statistical significance. *Recall that the Standard Error is simply the standard deviation divided by the square root of the sample size.*

In each instance where a StdDev column of data is present we will change these to StdErr. *We have to do this manually as Excel does not have a Standard Error function customized for our needs.*

40. **Scroll** to “*StdDev of Acanthaster*” *(Column 5)* associated with the “Yes” impact sites.

Recall that the “Count” column indicates our sample size, so we need to divide the value in “StdDev” cell by the square root of the value in the “Count”.

Do this with a calculator, a fresh spreadsheet in Excel, or other means of your choosing.
41. When completed, replace the contents of Column 5 with the standard errors you calculated
 a. Change the name of the column from “StdDev” to “StdErr”.

42. Confirm for the first set of data below.

<table>
<thead>
<tr>
<th>1-Time Frame</th>
<th>Impact Sil</th>
<th>Count of Acanthaster</th>
<th>Average of Acanthaster</th>
<th>5-StdErr of Acanthaster3</th>
<th>t of Grazing Urch</th>
<th>e of Grazing Urch</th>
<th>v of Gra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>After</td>
<td>Yes</td>
<td>45.0000</td>
<td>0.1556</td>
<td>0.0498</td>
<td>45.0000</td>
<td>4.7222</td>
</tr>
<tr>
<td>2</td>
<td>Before</td>
<td>Yes</td>
<td>42.0000</td>
<td>0.0714</td>
<td>0.0364</td>
<td>42.0000</td>
<td>4.5476</td>
</tr>
<tr>
<td>3</td>
<td>During</td>
<td>Yes</td>
<td>96.0000</td>
<td>1.2917</td>
<td>0.2353</td>
<td>96.0000</td>
<td>2.0833</td>
</tr>
</tbody>
</table>

43. Do this for all three other instances where standard deviations existed, so that we have only standard errors showing on our datasheet.

We are now ready to create informational, professional graphs and associated testing using Sigma Plot.

Note: Save your work.

44. Go to the “Graph” main menu from Sigma Plot and
 a. Select “Create Graph”.
 b. Choose “Vertical Bar Chart”.
 c. Click next.

45. Select “Grouped Error Bars”.
 a. Click next.

46. For “Symbol values”
 a. Make sure “Worksheet Columns” is selected in the drop down menu.
 b. Click next.

47. For data format choose “X Many Y”.
 a. Click Next.

Now Sigma Plot is ready for our data.
48. For our “X” data
 a. Choose the first column “Time Frame”.

49. For “Set 1:”
 a. Choose “Average of Acanthaster” values associated with “Yes” impact sites. (This is column 4)

50. For “Error 1:”
 a. Choose the associated standard errors we just calculated in column 5.

Now were ready to enter a second set of data.

51. For “Set 2:”
 a. Choose “Average of Acanthaster” values associated with “No” impact sites. (This is column 12)

52. For “Error 2:”
 a. Choose the associated standard errors we just calculated in column 13.

53. Click Finish.

54. When the graph appears change the zoom from 50% to 100% in the drop down menu on top of the screen.

55. Confirm.
Now some quick changes to our graph appearance.

56. **Change** the title to “A. Planci abundances in the CNMI”.
57. **Change** the “Y Data” to “Average A. Planci density per 100m2”.
58. **Delete** “X Data”.
59. In the legend box,
 a. **Double click** the text next to the black box and rename it “Impact sites”.
 b. **Double click** the text next to the grey box and rename it “Non-impact sites”.
60. **Move** the legend anywhere inside the graph.

Note: You can remove the upper line associated with the graph and the one on the right too if you like, just for appearance.

61. **Confirm** our new look.
Now we have a very informative graph that is clearly showing a major increase in COTS abundances during the disturbance years at the sites we consider to be “impacted” as compared with all others. Note we can’t run a formal statistical analyses on these data because our groupings “impact” or “no impact” were not defined prior to examining the data (or apriori). This is fine because we were interested in examining the cascading impacts to the grazing urchins, and eventually graph affinities with coral reef recovery.

62. Go back to our Sigma Plot data sheet, “Data 2”.
63. Go to the “Graph” main menu from Sigma Plot
 a. Select “Create Graph”.
64. Choose “Vertical Bar Chart”
 a. Click next.
65. Select “Grouped Error Bars”.
 a. Click next.
66. For “Symbol values”
 a. Make sure “Worksheet Columns” is selected in the drop down menu.
 b. Click next.
67. For data format choose “X Many Y”.
 a. Click Next.

Now Sigma Plot is again ready for our data.

68. For our “X” data choose the first column “Time Frame”.
69. For “Set 1:”
 a. Choose “Average of Grazing Urchins” values associated with “Yes” impact sites. (This is column 7)
70. For “Error 1:”
 a. Choose the associated standard errors we just calculated in column 8.

Now we’re ready to enter a second set of data.

71. For “Set 2:”
 a. Choose “Average of Grazing Urchins” values associated with “No” impact sites. (This is column 15)
72. For “Error 2:”
 a. Choose the associated standard errors we just calculated in column 16.
73. Click Finish.
74. Confirm.

Notice the second graph was created directly on top of our existing graph. We will first re-arrange our charts.

75. From the zoom drop down menu, select 50%.
 a. Drag the chart we just created to the bottom of the sheet
 b. Drag the Acanthaster graph to the top.

Note: Arrange them neatly.

Now, let’s clean up our grazing urchin chart.
76. Rename the title to “Grazing urchin abundances in the CNMI”.
77. Rename the “Y Data” to “Average urchin density per 100m2”.
78. Delete “X Data”.
79. In the Legend
 a. Double click the text next to the black box and rename it to “Impact sites”.
 b. Double click the text next to the grey box and rename it to “Non-impact sites”.
80. Drag the legend anywhere inside the graph.

Note: You can remove the upper line associated with the graph and the one on the right too if you like, just for appearance.

81. Change the zoom drop down menu to “Fit”.
82. Confirm our new look of the two graphs.
Consider these very interesting results. At the impact sites where COTS abundances were high we have noted what seems to be a significant decline in grazing urchins. It appears that when the COTS abundances grew, the urchin abundances declined. Strong evidence comes from the fact that the trend was only noted at the impact sites. We know how important grazing urchins are for reefs to recover, so the findings are clearly influential. What we don’t know is how the declines in urchins occurred. Are Acanthaster superior to the grazing urchins and able to take all of the good hiding spots in the reef, leaving the urchins open for predation? Was there a direct competitive interaction? We don’t know the answers to these questions, but the trend we do know is of great concern. Let’s see if these findings are indeed significant.

Sigma Plot has a number of built in statistical testing procedures. We will use a straightforward ANOVA test to examine if there were differences in urchin densities between the timeframes, at both the “Impact” and “Non-impact” sites. ANOVA tests compare the distributions of the samples, and require us to input means, standard errors, and sample sizes for each set of measurements. This guidebook assumes you have basic statistical knowledge, however any introductory statistics book can serve as a guide to better understand the procedures available in Sigma Plot. There is also a well developed “Help” menu with lots of additional information.

83. **Click back** on our "Data 2" sheet.

First we will analyze if urchin densities from the impact sites were significantly different during each time frame.

84. Under the “View” main menu
 a. **Scroll down** to “Toolbars” and make sure “Statistics” is highlighted.

You should see a statistics toolbar appear, it has a yellow light bulb icon and a drop down menu next to it.

85. In the **drop down menu**
 a. **Scroll down** to “One Way ANOVA”.
 b. **Click** on the magic wand icon next to the drop down menu.

The first step is to define our data format.

 c. **Select “Mean, Size, Standard Error”** to match our data.

86. **Click** next.
Now we are asked for our dataset. First we will test whether or not grazing urchin abundances differed at the “Impact” sites during the different time periods.

87. When asked for our “Data for Mean:”,
 a. **Choose** column 7, or “Average of Grazing Urchin” (which corresponds to average abundances within our impact sites)

88. When asked for our “Size:” (remember this is sample size)
 a. **Select** our **Count data** located in column 6.

89. When asked for **Standard Error**
 a. **Choose column 8.**

90. **Click** Finish.

91. **Confirm.**

The informational box tells us that “Treatments are significantly different”, meaning that urchin abundances are significantly different among the time frames at the impact sites.

We need to know which time frames are different from each other because there are three. So the dialog box asks us logically to choose a comparisons of individual means.
92. Select “Fisher LSD” from the drop down menu.

This is one popular post-hoc comparison of means test used in ecology.

93. Click Finish.

94. Confirm the statistical testing results sheet below.

One Way Analysis of Variance

Data source: Data 2 in CNML data-example.JNB

<table>
<thead>
<tr>
<th>Group Name</th>
<th>N</th>
<th>Missing</th>
<th>Mean</th>
<th>Std Dev</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>45</td>
<td>0</td>
<td>4.722</td>
<td>3.271</td>
<td>0.488</td>
</tr>
<tr>
<td>Row 2</td>
<td>42</td>
<td>0</td>
<td>4.548</td>
<td>3.039</td>
<td>0.777</td>
</tr>
<tr>
<td>Row 3</td>
<td>96</td>
<td>0</td>
<td>2.082</td>
<td>3.056</td>
<td>0.316</td>
</tr>
</tbody>
</table>

Source of Variation

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>2</td>
<td>298.503</td>
<td>149.252</td>
<td>11.090</td>
<td><0.001</td>
</tr>
<tr>
<td>Residual</td>
<td>130</td>
<td>2422.493</td>
<td>18.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>2720.997</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P < 0.001).

Power of performed test with alpha = 0.050: 0.991

All Pairwise Multiple Comparison Procedures (Fisher LSD Method):

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Diff of Means</th>
<th>LSD(alpha=0.050)</th>
<th>P</th>
<th>Diff > -LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 vs. Row 3</td>
<td>2.639</td>
<td>1.338</td>
<td><0.001</td>
<td>Yes</td>
</tr>
<tr>
<td>Row 1 vs. Row 2</td>
<td>0.175</td>
<td>1.553</td>
<td>0.823</td>
<td>No</td>
</tr>
<tr>
<td>Row 2 vs. Row 3</td>
<td>2.464</td>
<td>1.539</td>
<td><0.001</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Note on this sheet the groups are referred to as Row 1, 2, and 3. From our main data sheet we know that Row 1 represents the time frame after the COTS disturbances, Row 2 is before, and Row 3 is during. General data summaries that we selected for input first appear under “Group Name”. Then under “Source of Variation” we have our ANOVA table showing significant differences between the groups (but we don’t yet know which ones, just that variation exists). Finally, under “Comparison” we see individual pairwise testing results. Pairwise testing shows that Row 1 is unique and significantly different from all others, and Row’s 2 and 3 are the same. Translated, urchin densities significantly declined during the years where A. planci abundances were high, but seem to have rebounded.

We will now look at the “Non-impact” sites where we hypothesize that no change in urchin densities would have occurred.

95. Click on the magic wand icon next to the drop down menu. Again, the first step is to define our data format.

 a. Select “Mean, Size, Standard Error” to match our data.

 b. Click next.

96. For “Data for Mean:”,

 a. Select column 15, or “Average of Grazing Urchin” (which corresponds to average abundances within our Non-impact sites)

97. For our “Size:” (remember this is sample size)

 a. Select Count data located in column 14.

98. For Standard Error

 a. Select column 16.

99. Click Finish.

100. Confirm.

<table>
<thead>
<tr>
<th>One Way Analysis of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source: Data 2 in CNMI-data-example.JNB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Name</th>
<th>N</th>
<th>Missing</th>
<th>Mean</th>
<th>Std Dev</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>80</td>
<td>0</td>
<td>4.250</td>
<td>6.146</td>
<td>0.687</td>
</tr>
<tr>
<td>Row 2</td>
<td>159</td>
<td>0</td>
<td>7.016</td>
<td>7.736</td>
<td>0.613</td>
</tr>
<tr>
<td>Row 3</td>
<td>181</td>
<td>0</td>
<td>9.387</td>
<td>27.858</td>
<td>2.071</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>2</td>
<td>1525.563</td>
<td>763.281</td>
<td>2.092</td>
<td>0.125</td>
</tr>
<tr>
<td>Residual</td>
<td>417</td>
<td>1.2134.918</td>
<td>364.832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>419</td>
<td>1.3661.481</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.125).

Power of performed test with alpha = 0.050: 0.231

The power of the performed test (0.231) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.
The resultant summary sheet informs us that no significant variation was detected. We can look under the “Source of Variation” section and see our P-value is much greater than 0.05, typically required for significance. Thus, there is no need to conduct pairwise testing because no overall significant variation was detected. This tells us that at sites where no major increases in A. planci density were observed the urchin density remained the same. We can now be pretty confident in our conclusions that are graphically represented.

We are completed with this exercise, however you can open another existing file to better understand the ecological consequences associated with high A. planci densities in the CNMI from 2003-2006.

End of Exercise 6.2
Section 3 – Multivariate statistics and graphing the results

Exercise 7 – An introduction to multivariate data considerations, PRIMER-E, and PERMANOVA+

For this exercise we will again consider fish biomass data collected along replicate transect lines, this time from Nimpal and Gachuug localities, Yap State, Federated States of Micronesia. Rather than focus upon any individual species of fish, or compare “total biomass”, we will now begin to address the multivariate nature that many ecological datasets have. Yap Community Action Program’s marine office conducts monitoring at several localities that desire to establish an MPA’s for conservation purposes. Similar to Pohnpei, for each MPA a ecologically-similar reference site is established. Yap’s program collects data at two different depths, a 3m and 10m.

In this exercise we will again focus upon fish data.

1. **Open Excel**
 a. **Open “Yap-Nimpal-MPA-Fish”**.

Notice the database, site metadata, and fish species lookup tables that were used to generate the database. In this database each row represents one or more fish of the exact same size, of a particular species, that was observed on a transect. For the Pohnpei database recall that each row was one individual fish only, here column J indicates how many fish were seen on any transect of the same species and size. Make sure you understand that before moving forward.

We will need to prepare a table that we can import to PRIMER-E for further analyses. We’ll again use Pivot Table features.

2. **Highlight** the data and **insert** a Pivot Table,
 a. Name the table “Yap-fish-pivot”.
 b. **Add “Site”, “MPA Status”, “Year”, “Reef Type”, “Depth (m)”, and “Transect” all under Row Labels (in that order)**
 c. **Add “Scientific Name” to the Column Labels.**
 d. **Add “Biomass” to the Values.**
 e. **Change** the attributes of Biomass to “**Sum**”.

3. **Confirm** the attributes of Biomass to “**Sum**”.

![Image of Pivot Table interface]

Drag fields between areas below:

- **Report Filter**
- **Column Labels**
 - **Scientific Name**
 - **Sum of Biomass**

Row Labels
- **Site**
- **MPA Status**
- **Year**
- **Reef Type**
- **Depth (m)**
- **Transect**
Now modify the way the table looks for easiest input into PRIMER.

4. **Right click** in cell **A5**
 a. Select **"Field Settings"**,
 b. Under “Subtotals”, **select “None”**.
5. Confirm.
6. **Repeat** for cells A6, A7, A8, and A9.

This will condense all of the subtotals that Excel autogenerates.

7. **Right click** anywhere in the table
 a. **Scroll down** and select "**PivotTable Options**".

8. On the tab **"Layout & Format"**
 a. **Check** the box that says **"For empty cells show:"**
 b. **Put** a **"0"** in the box.

9. On the tab **"Totals & Filters"**
 a. **Uncheck** the box **"grand totals for rows and columns"**.

10. On the tab **"Display"**
 a. **Check** the box **"Classic Pivot Table layout"**.

![Field Settings dialog box](image)
11. Confirm your new table look.

We will export this to a new sheet now.

12. Click on any cell in the table.
 a. Press Ctrl+A.
 b. Right click and select “Copy”.
13. Select “Sheet3”.
 a. Right click in cell A1
 b. Select “Paste Special” and select “Values”.
 c. Click OK.
14. Rename the sheet “Primer-Prepare-Yap-Fish”.
15. Confirm.

16. Delete extraneous rows and columns.
 a. Delete Row 1.
 b. Delete Row 77
 c. Delete column “AC”.
Now, we have to fill in the missing cells in columns A through E, with fill down functions similar to before. Do this on your own and confirm the look of your working data table below.

<table>
<thead>
<tr>
<th>Site</th>
<th>MPA Stat. Year</th>
<th>Reel Type</th>
<th>Transect</th>
<th>Depth (m)</th>
<th>Acanthurus</th>
<th>Acanthurus</th>
<th>Acanthurus</th>
<th>Caranx</th>
<th>Cephalophi</th>
<th>Chelinus</th>
<th>Chlorurus</th>
<th>Chlorurus</th>
<th>Ctenocha</th>
<th>Epinephelus</th>
<th>Epinephelus</th>
<th>Epinephelus</th>
<th>Grouper</th>
<th>Hippocar</th>
<th>Kyphusus</th>
<th>Lutjanus</th>
<th>Lutjanus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2007</td>
<td>Channel</td>
<td>3m</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>257.947</td>
<td>257.947</td>
<td>310.756</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2007</td>
<td>Channel</td>
<td>3m</td>
<td>2</td>
<td>155.967</td>
<td>132.629</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>130.032</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2007</td>
<td>Channel</td>
<td>3m</td>
<td>3</td>
<td>50.1923</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2009</td>
<td>Channel</td>
<td>3m</td>
<td>4</td>
<td>709.2205</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2010</td>
<td>Channel</td>
<td>3m</td>
<td>5</td>
<td>1024.215</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2011</td>
<td>Channel</td>
<td>3m</td>
<td>6</td>
<td>198.148</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2012</td>
<td>Channel</td>
<td>3m</td>
<td>7</td>
<td>1218.561</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2013</td>
<td>Channel</td>
<td>3m</td>
<td>8</td>
<td>1484.77</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2014</td>
<td>Channel</td>
<td>3m</td>
<td>9</td>
<td>1706.72</td>
<td>0</td>
</tr>
<tr>
<td>Gachug</td>
<td>Reference</td>
<td>2015</td>
<td>Channel</td>
<td>3m</td>
<td>10</td>
<td>1984.67</td>
<td>0</td>
</tr>
</tbody>
</table>

We have one last step before we can import our file into PRIMER-E. We must remove the metadata from the ecological data. **It is important from this point forward to not change the order or appearance of the data until we successfully import into PRIMER-E.**

17. Highlight all of the fish biomass data (**Cell G1 and all the way to cell AB76**)
18. Right click the highlighted cells and select **copy**.
19. Create a new Excel Sheet
Exercise 7

Managing and Using Data - Guidebook

21. **Open** the PRIMER-E Program.
 a. **Click** on the “*open file*” icon
 b. **Click** the arrow to open the drop down menu next to “*Files of type:*”
 c. **Set** this to Excel.

![File selection dialog](image)

22. **Select** your Excel file and **click** open.
23. **Click** on the dropdown menu for “*Excel worksheet*”
 a. **Select** “Primer import”.
 b. **Make sure** “Sample data” is checked
24. **Click** Next.

Note: We did not include a title in our Excel sheet

25. In the next dialog box
 a. **Uncheck** the green mark next to “*Title*”.

Note: We also did not include Row labels in our Excel sheet,

b. Uncheck the green mark next to “*Row labels*”.
 c. **Select** “Samples as rows” (as our data are aligned in rows)
26. **Select** “Biomass” for the type of data.
27. **Click** “Finish”.

![Excel File Wizard](image)
You should have now successfully imported your data into PRIMER, Maximize the windows and confirm.

We will now set up our workspace for analyses.

28. Add our “factors for analyses”, basically our site information, from Excel.
29. Minimize PRIMER and re-open our Excel file.
30. Select the “ Primer-Prepare-Yap-Fish” datasheet.
 a. Highlight cells A2:A76
 b. Right click and select “Copy”.
31. Minimize Excel, maximize PRIMER.
32. In PRIMER, scroll down and select “Factors” from the “Edit”.
 a. Select “Add”. Name this factor “Site”.
 b. Right click in the first cell under site and select “paste”.
 c. Confirm with screen shot below.

33. Repeat previous step for “MPA Status”, “Year”, “Reef Type”, and “Depth”.
 a. Confirm with the screen shot below.
34. Click OK (**Very Important**)

Now we are set for our analyses with PRIMER.

35. Save your workspace as “Yap-multivariate-fish-exercise”.

First, a note about PRIMER. This is a very powerful and user-friendly data visualization and analyses package. In this exercise we will cover some of the basic features. Each user at this workshop was provided a user manual and example guidebook, that accompanies the software. As your capacity develops and your datasets emerge and change, you can refer to the manual for more examples and suggestions. Here, we will conduct some of the most basic procedures in PRIMER that shows how easy and powerful a multivariate approach to data analysis can be. It should be understood that less care is given to explaining the mathematical calculations that accompany these procedures, rather we focus mostly on visualizing and testing patterns. The user manual contains easily understandable mathematical summaries of each procedure.

We will first take a multivariate look at the differences in fish assemblages for shallow coral assemblages inside the Nimpal no-take preserve, and the Gachuug reference location.

36. Select the samples that we wish to compare.

37. From the PRIMER main menu,
 a. Click on “edit” and scroll down to “factors”.

 Note: Get some scratch paper and a pencil ready.

27. Maximize the “Factors” dialog box to the entire screen

We will first look at the differences in fish assemblages between the Nimpal conservation area and the Gachuug reference site for the “Channel” reef type, and only at “3m”. We want to record all “Labels”, or sample ID’s, that pertain to our analyses so we can select them from the main screen.

 Important: Confirm on your own that for the analyses defined above we wish to examine sites (or Labels) (S1)-(S5), (S21)-(S25), (S36)-(S40), and (S56)-(S60).

28. Close the Factors window.

29. On your main data sheet highlight the rows that pertain to our desired analysis by left clicking on each.
30. Confirm below.
38. Go to “Select” in the main menu and choose “Highlighted”.

 a. Confirm below

You will notice the color of the cells changes to blue to indicate that selective conditions for samples are in place. (Note: each row represents one individual transect from which observations were made.)

Next, we are ready to conduct a basic data transformation, a log transformation, so that our analyses takes into account the dominant and rare species of fish recorded in a realistic manner. Without the transformation, dominant fish such as ‘Ctenochaetus striatus’ would have a greater influence on the multivariate assessment. While this species is commonplace to most reefs on Yap, our goal is to take the entire assemblage into account. You can confer with the user manual to better understand data transformation. Also, the topic of transforming data has been heavily documented in books and scientific articles. The transformation one chooses typically depends upon the type of data that was collected. Count data would require a different transformation from biomass data and percent coverage data. The transformation selected for use here is widely accepted and commonly employed for biomass and abundance data.
39. Select the "**Analyze**" menu,
1. Go to "**pre-treatment**"
2. Select "**Transform overall**
3. Select Log (X+1) from the drop down menu
4. Click OK.
5. Confirm Below

You have now created a new species by site datasheet, you can see on the left that the current name is “Data1”.

40. Rename this to "**3m-channel-transformed**".
We will now proceed and create a similarity matrix. A similarity matrix compares each individual sample (our ‘sample’ unit is one individual transect remember) to others based upon the differing biomass of fish in each species category. Again there are many mathematical formulas that researchers have derived to do this, we’ll use a very common one for ecological studies called a “Bray-Curtis” similarity measure. Here is what it looks like:

\[D(y_1, y_2) = \frac{\sum |y_{1j} - y_{2j}|}{\sum (y_{1j} + y_{2j})} \]

\(D \) is the Bray-Curtis distance between two samples (or transects in our case). \(\Sigma \) represents the summation for all fish species and \(y_{1j} \) and \(y_{2j} \) represent fish biomass from two different transects. It is simple to understand that the ecological distance is calculated by dividing the difference between fish species abundances by the sum, for two consecutive transects. This is done for all species and all transects by the computer, and we end up with a desirable measure of distance between each transect. In other terms, the distance tells us how similar two transects were, or were not.

41. Go to the “Analyze” menu
 a. Select “Resemblance”.

![Resemblance](image-url)
Note: Make sure the analysis is between “Samples” and were using the “Bray-Curtis” similarity.

42. Click OK.
Now we have a “data matrix” that compares every possible combination of transects, and provides a distance measure of ecological similarity for each comparison.

Note that we could have used many different similarity indices besides the Bray-Curtis, you can learn about these and when they are appropriate from your user manual.

From here we want to visualize our findings. PRIMER, again, has many options for the user to consider. We will use the most common visualization method called “Multi-dimensional scaling”. Through this process the distances we calculate between each pair of sites are all overlaid in the same “multi-dimensional” space. The computer then reduces the dimension of the resultant plot down to two or three, while preserving as much of the structure in the data as possible. It is best understood through an example, and the math behind this can be found in the user manual.

43. Go to the “Analyze” menu.
(Notice the options have changed, items that were previously available are no longer. This is because we are working with an active ‘resemblance matrix’ as opposed to a ‘species by site’ dataset.)

 a. Select MDS.

 b. Keep the default settings for our options

 c. Click OK.
After a bit of processing time, PRIMER produces a 2-dimensional and 3-dimensional plot called “Graph1 and Graph2”. Let’s just focus on the first, 2-dimensional plot. We will change the look of this plot to better understand the findings.

44. Under the “Graph” menu
 a. Select “Data labels & symbols”.

![Graph Options](image)

45. For “Labels”
 a. Check the “By factor” box
 b. From the drop down menu select “Year”

46. For “Symbols”
 a. Check the “By factor” box
 b. From the drop down menu select “Site”

47. Click ok
48. Confirm

You should have changed the look of your graph
(Note: Your graph may be rotated differently, however the spatial distances between sites should be the same.)
Take a moment to reflect what we learn by this graph. First, in the upper right corner we see “2D Stress: 0.22”. This tells us how successful our MDS plot has maintained the actual ecological distances between each transect, while transforming the output into only 2 dimensions. The user manual provides references to research that suggest that values of 0.25 or below are typically considered sufficient and reliable. So, we have successfully portrayed our data into 2-dimensions, and don’t need to look at the 3-dimensional graph, unless your interested.

Most notably, however, the graph tells us that for inner channel sites, 3m fish biomass data have changed for the Nimpal site between 2007 and 2009. This is not true for all transects, but for many the trend holds. However for Gachuug, the fish biomass did not change. So, we have indication that change occurred only at Nimpal, but we need to understand what the ‘change’ is.

Next we will calculate the contribution of each species of fish to our detected trends. PRIMER has a built in analyses that calculates the relative contributions of each species in determining the trends that the graph show.

49. Go back to the “3m-channel-transformed” data sheet.

We need to make further selections from our data. What we want to know is how and why the fish biomass are different between these reefs in 2009 only, because in 2007 they were still similar. Basically, we’d like to know what change occurred.

50. In the “Edit” menu, then select “Factors”.

Notice only our subset of sites appears.

For our next examination we wish to look at only 2009 data, corresponding to samples (S21-S25) and (S56-S60). Note those sample labels on your scratch paper and close the factors box.

51. Click on the samples noted above,
52. Go to the “Select” menu
 a. select highlighted.
53. Confirm your datasheet below.

(Notice only 10 samples remain, these correspond to 10 transects surveyed, 5 inside of the MPA at a 3m depth in 2009, and 5 outside.)

<table>
<thead>
<tr>
<th></th>
<th>Acanthurus In</th>
<th>Acanthurus M</th>
<th>Acanthurus tr</th>
<th>Caranx melampygus</th>
<th>Cephalopholis</th>
<th>Cheilinus undulatus</th>
<th>Chlorurus mola</th>
<th>Chlorurus scutulatus</th>
<th>Epinephelus f.</th>
<th>Epinephelus n.</th>
<th>Groupers</th>
<th>Hippocampus k.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S21</td>
<td>0</td>
<td>8.0725</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.1919</td>
<td>6.4768</td>
<td>0</td>
<td>2.7503</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.2913</td>
<td>6.1976</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.4432</td>
<td>5.9739</td>
<td>6.3851</td>
<td>7.5003</td>
<td>4.1077</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S24</td>
<td>0</td>
<td>5.5608</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.7332</td>
<td>6.9244</td>
<td>5.8172</td>
<td>0</td>
<td>3.9079</td>
<td>0</td>
</tr>
<tr>
<td>S25</td>
<td>0</td>
</tr>
<tr>
<td>S56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.8831</td>
<td>6.3846</td>
<td>6.1888</td>
<td>0</td>
<td>0</td>
<td>3.3240</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.5362</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.3372</td>
<td>0</td>
<td>0</td>
<td>6.1722</td>
</tr>
<tr>
<td>S58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.9545</td>
<td>0</td>
<td>0</td>
<td>4.6774</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9997</td>
<td>0</td>
<td>0</td>
<td>3.6149</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S60</td>
<td>0</td>
<td>4.5022</td>
<td>0</td>
</tr>
</tbody>
</table>

54. Go to the “Analyze” menu and select “SIMPER” (which is short for analyses of similarities).

55. Under “Factor A:”
 a. Select “Site”

So we can determine differences can leave the default settings that match our MDS plot generation

56. Click OK.
57. **Confirm (Note):** Scroll down the text output sheet so we can see the comparison between the two sites. The relevant section was manually highlighted in blue for identification.

<table>
<thead>
<tr>
<th>Species</th>
<th>Group Gachuug Av. Abund</th>
<th>Group Nimpal Av. Abund</th>
<th>Av. Diss</th>
<th>Diss/SD</th>
<th>Contrib%</th>
<th>Cum.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorurus sordidus</td>
<td>7.29</td>
<td>0.00</td>
<td>14.03</td>
<td>3.08</td>
<td>18.07</td>
<td>18.07</td>
</tr>
<tr>
<td>Scarus sp.</td>
<td>0.00</td>
<td>5.80</td>
<td>13.22</td>
<td>2.73</td>
<td>17.02</td>
<td>35.10</td>
</tr>
<tr>
<td>Cephalopholus argus</td>
<td>0.00</td>
<td>3.50</td>
<td>5.62</td>
<td>1.72</td>
<td>0.53</td>
<td>43.62</td>
</tr>
<tr>
<td>Pygopus</td>
<td>3.82</td>
<td>1.16</td>
<td>5.12</td>
<td>0.52</td>
<td>7.89</td>
<td>51.51</td>
</tr>
<tr>
<td>Cheilinus undulatus</td>
<td>3.39</td>
<td>1.24</td>
<td>5.67</td>
<td>1.09</td>
<td>7.30</td>
<td>58.81</td>
</tr>
<tr>
<td>Caranx melampygus</td>
<td>1.29</td>
<td>2.68</td>
<td>4.85</td>
<td>0.85</td>
<td>6.25</td>
<td>65.07</td>
</tr>
<tr>
<td>Acanthurus nigricepsa</td>
<td>2.33</td>
<td>0.90</td>
<td>4.64</td>
<td>0.66</td>
<td>5.97</td>
<td>71.04</td>
</tr>
<tr>
<td>Hipposcarus longiceps</td>
<td>1.10</td>
<td>1.32</td>
<td>3.33</td>
<td>0.64</td>
<td>4.29</td>
<td>75.33</td>
</tr>
<tr>
<td>Ctenochaetus striatus</td>
<td>5.61</td>
<td>4.50</td>
<td>3.22</td>
<td>1.07</td>
<td>4.14</td>
<td>79.47</td>
</tr>
<tr>
<td>Grouper</td>
<td>0.00</td>
<td>1.63</td>
<td>2.63</td>
<td>0.46</td>
<td>3.64</td>
<td>63.11</td>
</tr>
<tr>
<td>Placochinus lineatus</td>
<td>0.00</td>
<td>1.43</td>
<td>2.62</td>
<td>0.48</td>
<td>3.32</td>
<td>65.49</td>
</tr>
<tr>
<td>Chlorurus microchoinos</td>
<td>1.80</td>
<td>0.00</td>
<td>2.38</td>
<td>0.49</td>
<td>3.07</td>
<td>89.56</td>
</tr>
<tr>
<td>Epinephelus merra</td>
<td>1.33</td>
<td>0.00</td>
<td>2.34</td>
<td>0.78</td>
<td>3.02</td>
<td>92.58</td>
</tr>
</tbody>
</table>

From this table three columns are most informative. The first column has the average biomass from Gachuug (the reference site) for each fish species. The second from Nimpal. For now, we can disregard the next two columns and focus upon the % contribution. We are most interested in what species contributed to the majority of the difference found in our MDS plot. Notice the first four fish cumulatively accounted for > 50% of the variance (the last column tells us the cumulative variance accounted for). So we should logically focus upon these four species. The most notable difference are a shift in parrotfish from Chlorurus sordidus, very common at the reference site, to ‘other Scarids’ (including Hipposcarus longiceps, Scarus tricolor, S. frenatus, and others). Also, there has been an increase in the grouper (Cephalopholus argus).

Now we have a good idea of where change occurred, the magnitude of change, and what ‘change’ consisted of. This is very powerful to aid our understanding.

Let’s continue to look at other reef types and depths.

58. **Go back** to the first, main data sheet under the “Yap-multivariate-fish-exercise”.
59. From the **select** menu, select “All”.
60. **Go back** to the “Edit” menu and select “Factors”.

Let’s look at the same channel reefs, this time at the 10m depth.
On your scratch paper record the relevant sites we want to highlight (S6-S10), (S26-S30), (S41-S45), and (S61-S65). (Note: You can deselect the undesired samples by clicking on them, and select the new samples noted above.)

62. From the "Select" menu select "Highlighted".

63. Confirm.

64. Select the "Analyze" menu,
 a. Go to "pre-treatment",
 b. Select "Transform overall".
65. Select "Log (X+1)" from the drop down menu and
66. Click OK.

We will follow the exact same steps as before.
You have now created a new species by site datasheet, you can see on the left that the current name is “Data1”.

67. **Rename** this to **“10m-channel-transformed”**.

68. **Go to** the **“Analyze”** menu
 a. **Select** **“Resemblance”**.
69. Under “Analyze Between”
 a. Select “Samples”

70. Under “Measure”
 a. Select “Bray-Curtis similarity”.

71. Click OK.
Now we have a “data matrix” that compares every possible combination of transects, and provides a distance measure of ecological similarity for each comparison. From this we will again create our multi-dimensional scaling plot (MDS plot).

72. Go to the “Analyze” menu.

Note: Notice the options have changed; items that were previously available are no longer. This is because we are working with an active ‘resemblance matrix’ as opposed to a ‘species by site’ dataset.

73. Select MDS.

![MDS dialog box](image)

- a. Keep the default settings for our options
- b. Click OK.

After a bit of processing time, PRIMER produces a 2-dimensional and 3 dimensional plot called “Graph1 and Graph2”. Let’s just focus on the first, 2-dimensional plot. We will change the look of this plot to better understand the findings.
74. Under the “Graph” menu,
75. Select “Data labels & symbols”.

76. For “Labels”
 a. Check the “By factor” box
 b. From the drop down menu select “Year”.

77. For “Symbols”
 a. Check the “By factor” box
 b. From the drop down menu select “Site”.
78. You should have changed the look of your graph, confirm.

(Note: Your graph may be rotated differently; however the spatial distances between sites should be the same.)

Notice we have very similar trends compared with our 3m depth analyses earlier.

Next we will calculate the contribution of each species of fish to our detected trends.

PRIMER has a built in analyses that calculates the relative contributions of each species in determining the trends that the graph show.
79. Go back to the “10m-channel-transformed’ data sheet”

We need to make further selections from our data. What we want to know is how and why the fish biomass are different between these reefs in 2009 only, because in 2007 they were still similar. Basically, we’d like to know what change occurred.

80. Select the “Edit” menu
 a. Select “Factors”.

Notice only our subset of sites appears. For our next examination we wish to look at only 2009 data, corresponding to samples (S26-S30) and (S61-S65).

Note those sample labels on your scratch paper and close the factors box.

81. On your main sheet
 a. Highlight the samples noted above,

82. Go to the “Select” menu
 a. Select “highlighted”.

83. Confirm your datasheet below.

Notice only 10 samples remain, these correspond to 10 transects surveyed, 5 inside of the MPA at a 10m depth in 2009, and 5 outside.

<table>
<thead>
<tr>
<th>Biomass</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthurus</td>
<td>Acanthurus</td>
</tr>
<tr>
<td>S26</td>
<td>0</td>
</tr>
<tr>
<td>S27</td>
<td>0</td>
</tr>
<tr>
<td>S28</td>
<td>0</td>
</tr>
<tr>
<td>S29</td>
<td>0</td>
</tr>
<tr>
<td>S30</td>
<td>0</td>
</tr>
<tr>
<td>S31</td>
<td>0</td>
</tr>
<tr>
<td>S32</td>
<td>0</td>
</tr>
<tr>
<td>S33</td>
<td>0</td>
</tr>
<tr>
<td>S34</td>
<td>0</td>
</tr>
<tr>
<td>S35</td>
<td>0</td>
</tr>
</tbody>
</table>
84. Go to the “Analyze” menu
 a. Select “SIMPER” (which is short for analyses of similarities).

85. Under “Factor A:”
 a. Select “Site” from the drop down menu
So we can determine differences can leave the default settings that match our MDS plot generation, and

86. Click OK.
87. Confirm.

Scroll down the text output sheet so we can see the comparison between the two sites. The relevant section was manually highlighted in blue for identification.
From this table three columns are most informative. The first column has the average biomass from Gachuug (the reference site) for each fish species. The second from Nimpal. For now, we continue to disregard the next two columns and focus upon the % contribution. We are most interested in what species contributed to the majority of the difference found in our MDS plot. Notice the first four fish cumulatively accounted for > 50% of the variance (the last column tells us the cumulative variance accounted for). So we should logically focus upon these three species. The most notable difference, again, is a shift in parrotfish from Chlorurus sordidus, very common at the reference site, to ‘other Scarids’ (including a mixture of other species of parrotfish besides the common ones, as noted by Yap’s monitoring program). Also, there has been an increase in the grouper (Cephalopholus argus).

We could continue to do this for the “Outer” reefs too, but for our purposes we can conclude the exercise now. We conclude that substantial changes appear to have occurred between 2007 and 2009 for the “Channel” monitoring sites associated with Nimpal MPA and Gachuug reference area. In a later exercise we will test whether or not these changes were statistically significant using a multivariate, nested ANOVA approach. This exercise was intended to improve our ability to visualize and comprehend our data initially. Often we’d like to have immediate insight into potential trends, regardless of statistical significance, soon after our surveys are conducted. This exercise represents one means at gaining quick insight into multivariate patterns in our collected ecological datasets.

End of Exercise 7
Exercise 8 – A multivariate, statistical examination of Pohnpei’s Marine Protected Areas using PRIMER-E and PERMANOVA+

For this exercise we will refer back to the Pohnpei marine protected area fish biomass data we began to explore in exercise 3 and 4. We will be looking these data from a multivariate perspective in order to understand the status of each MPA. More formally, we will examine how the variance in the fish dataset is spread out among the numerous independent variables that emerge from their monitoring program design. To this end, we will also test for statistical significance, providing a guide for future work with datasets of your choosing.

It will help to examine a diagram of the survey design used. There were five villages that have established MPA’s within them, noted as D, K, N, M, and L. Each MPA encompasses both inner lagoon and outer reef sampling sites. For each reef type two sampling sites were set up inside and outside the MPA. Finally, at each sampling site there were 5 transects surveyed.
This type of experimental design is defined as “nested”. Reef type is nested within village location, MPA status is nested within reef type, and sites are nested within each MPA status. Using this design we can examine all MPA’s together or individually, however it is always best to start our investigations with a big-picture perspective (i.e., highest levels first), then work our way down. We are interested in determining what nesting level, or levels, explain significant proportions of the variation in the fish biomass data, obviously we are most interested in learning about MPA status, but we wish to account for all other predictable variation that is possible to do so. The PERMANOVA+ software allows us to easily do this for our multivariate dataset.

First we need to import our data from excel as we did in the previous exercise.

1. Open the “Pohnpei-MPA-fish-PERMANOVA-example” file.

Take a look at both worksheets. First the “Data” sheet. You can see the meta-data columns follow the diagram above, starting with ‘Location’ and ending with ‘Transect #’. After these information data you can see each indicator fish species, and the biomass.

2. Open the sheet “For Primer”.

These are the same data arranged in a simple way for PRIMER to import the numerical data, and the explanatory factors. You can see the fish abundance data appear first, but as you scroll to the right you eventually come to a blank row, then the informational data. This is the format that is required by PRIMER. Numerical data followed by a blank, then categorical data.

3. Close Excel and Open PRIMER.

4. Select Open from the menu.
 a. Select Excel under the dropdown menu for ‘files of type’
 b. Navigate to “Pohnpei-MPA-fish-PERMANOVA-example.xlsx”
 c. Click “Open”.

Note that PERMANOVA stands for “permutation multivariate ANOVA”.

5. In the next menu box
 a. Click the dropdown menu and choose the excel worksheet titled “For Primer”.
 b. Select “Sample data” as the data type
 c. Click next.

6. Uncheck the two green marks next to “Title” and “Row labels” (we do not have either of these in our Excel file)
 a. Select “Samples as rows” for the Orientation.
 b. Select “Biomass” for the data type.
 c. Click Finish.
7. Confirm below.

Note: Check to ensure that the “factors” have all been imported too.
8. Under the ‘Edit’ menu
 a. Select “factors”
9. Confirm below.

You can see that all of our factors have been automatically imported by PRIMER. We are going to use a useful feature in PRIMER and make a new factor that is a combination of several of the others. This will be done so we can generate a better graphical interpretation.
10. Click on the “Combine” box on the left.
 a. Place ‘Location’, ‘Reeftype’, ‘MPA’, and ‘Site’ in the “Include” box in that order, which follows our experimental design diagram above.
 b. Click OK.

You can see your new factor has appeared.

11. Using the rename box on the left,
 a. Rename this factor to “Combined name”.
 b. Click OK (Note: No changes will be saved unless you click on OK)

In order to help us set up our PERMANOVA design, let's first gain a big-picture perspective of the data set. To do this we will create a multi-dimensional scaling plot, similar to the last exercise.

12. Go to the “Analyze” menu
 a. Select “pre-treatment”.
 b. Select “transform overall”

13. In the dropdown menu
 a. Select “Log(x+1)”.
 b. Click OK.
A new sheet with the log-transformed data should appear.

14. Go to the “Analyze” menu
 a. Create a **Bray-Curtis** similarity matrix.
 b. Select “resemblance” (make sure the analyses is between samples and you use a Bray-Curtis similarity method)
15. Click OK

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
<th>S15</th>
<th>S16</th>
<th>S17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>
Now we just need to create multi-dimensional scaling plot to improve our big-picture understanding before moving forward.

17. **Go to “Analyse”,**
 a. **Select “MDS” (wait for the computer to process the required calculations)**

Once completed lets change the look of the graph to gain a better perspective for our analyses.

18. **Go to the “Graph” menu**
 a. **Select “Data Labels & Symbols”.**
 b. On the “Labels” left hand side **uncheck** the box that says “Plot”.
 c. On the “Symbols” side **change** the factor dropdown menu to “Location”.

19. **Click OK**
20. **Confirm.**
This MDS plot shows similarities between the individual fish transect data from each location, but it does not tell us anything about the different reef types, MPA status, or individual sites yet. The intermixing of symbols and colors strongly suggests that there are no strong difference in the overall composition of fish assemblages between the locations. Let's look at the reef types.

21. Go to the “Graph” main menu and
 a. Select “Data Labels & Symbols”

22. On the “Symbols” side
 a. Change the factor dropdown menu to “Reef type”.

23. Click OK

24. Confirm.
In this MDS plot we can start to see where some of the major ecological variation exists. While not extremely clear, we can start to see separation between the two different reef types, regardless of MPA status. This tells us that in order to compare MPA and reference sites, it would be a very good idea to first account for reef type, which we will do next. Before moving on you can change the data symbols to other factors if you like. One last note here, there is one green triangle in the far right hand of the above plot. These seems to be a strong outlier, meaning it is very unlike any of the other transects. Typically when this occurs there may have been an error in the data collection or entry, or this may just be a very unique situation. Either way, we should remove this outlier point from further analyses, as it may bias the outcome.

To find out the name of the outlier sample...

25. **Go back** to the “**Graph**” menu
 a. **Select** “**Data Labels & Symbols**”
26. On the left, **click** on box for “**Plot**” the labels.
27. **Click** OK
28. **Confirm**.
We can see that our outlier transect is “S126”. Note that on your scratch paper.

29. Move back to our data file, after the log transformation.
 a. On the left, make active the “Data1” sheet.
 b. Rename to “log-transformed”.

30. Confirm.

Now with this sheet active

31. Highlight all the data by clicking in the box above “S1” and to the left of “Acanthurus lineatus”.

The data sheet should change color.

32. Scroll down to “S126”
 a. Click on that row.

That row should change to a different color.
33. Go to the “Select” menu on top
 a. Scroll down to “Highlighted”.

Now you have a new datasheet with the outlier data removed, ready for further analyses.

Note: Check to ensure that S126 is no longer there.

34. Confirm.
Now, we are ready to design our PERMANOVA+ analysis.

35. Go to the **PERMANOVA**+ menu
36. Select “Create PERMANOVA+ design”.
37. Title this “PNP MPA”.

Recall from our diagram above we have four factors: 1) Location, 2) Reef type, 3) MPA status, and 4) Sites. If you can’t recall this see the introduction above.

38. Select “4 factors
39. Click OK.

40. Double click in the first cell below “**Factor**” (you will notice a drop down menu appears)
 a. Select “**Location**”.
41. In the cell below “**Location**”
 a. Select “**Reef type**”.
42. Continue down the column selecting “**MPA**” and “**Site**”, in that order.
43. **Double click** on the cell next to “**Reef type**”, under the column “**Nested in**”
 a. Nest “**Reef type**” in “**location**”, as we discussed above.

44. **Click** OK.

45. Nest “**MPA**” within “**Reef type**” (as there are sites inside and outside of MPA’s for each reef type)

46. Finally, nest “**Site**” within “**MPA**” (as there are two sites with 5 transects each inside each MPA zone)

47. In the next column “Fixed/random” we need to
 a. Make sure the first box is set to “**Random**”,
 b. The second and third to “**Fixed**”
 c. The fourth to “**Random**”.
Our sampling design dictates whether or not a variable is fixed or random. For instance, “Location” could be any village in Pohnpei that decides to establish an MPA, so is set to random. However, “Reef type” and “MPA” status are well-defined categories that do not change and are not random by nature. Finally, “Site” or the exact placement of the sites in each MPA and reference site is also random.

48. Confirm.

We are now ready to run our PERMANOVA on the dataset. However, just like a univariate ANOVA test, we need to examine whether or not our variances are homogeneous. This will determine if we can continue with our PERMANOVA or we need to utilize a non-parametric test (i.e., a rank sum test procedure like an ANOSIM). Basically, can we use our actual numerical data, or do we need to use a derivative of the data, such as rank sums.

PRIMER has a function built in to understand the dispersion of the multivariate data. Dispersion can be thought of as statistical variance, or how different each replicate measure is to the next. For our example we wish to know if the replicate transect conducted at each site all have similar levels of dispersion. If they do, we can move forward with our PERMANOVA, else, we’d probably choose to move on with the ANOSIM procedure, discussed above in Exercise 7.

Remember we removed one outlier point so we need to calculate another similarity matrix from our log-transformed data.
49. **Highlight** the “log-transformed” data sheet on the left.

50. **Go to** the “**Analyse**” menu

 a. **Scroll down** to “**Resemblance**”

 b. **Create a Bray-Curtis similarity matrix**.

51. **Go to** the **PERMANOVA**+ menu

52. **Scroll down to PERMDISPERS**E. The following dialog box should appear

![PERMDISP dialog box](image)

53. **Change** the group factor to “**Site**”

Meaning that we want to understand the variance at the site level, within which five replicate transects of data were collected. You can refer back to the diagram at the top if you don’t understand why we are choosing “Site”.

Exercise 8

Managing and Using Data - Guidebook
You should now get a PERMDISP results sheet that displays the homogeneity of multivariate dispersions. These results can be interpreted like and ANOVA F-statistic. The key results are located under the “Deviations from Centroid” header. Here you can see that our F-statistic is relatively low, and that we have 32 total sites, meaning there are 31 degrees of freedom for the test. The last item displays the P-value, P(perm) = 0.1, suggesting that no significant differences in multivariate dispersions exist between all of the sites. Below this you can find the average dispersion value for each site.

For our purposes, the non-significant value means that we can proceed as planned with our PERMANOVA, using the parametric dataset.
PERMANOVA Testing:

The input for a PERMANOVA test is a similarity matrix, such as the Bray-Curtis similarity matrix we already created that describes how similar each individual transect is to one another.

55. On the left hand side of the screen **highlight** the "**log-transformed**" sheet.
56. Go to the "**Analyse**" menu
a. Select "**Resemblance**" make sure you are calculating a "**Bray-Curtis**" similarity matrix again
57. Click OK.
58. Rename the resultant matrix "**Bray-Curtis similarity**".

See the previous exercise for a more formal definition of what this similarity matrix represents.
59. Go to the PERMANOVA+ menu
 a. Select “PERMANOVA”.
60. Under “Design Worksheet:” select “Design1”
61. Under “Test”
 a. Select “Main test”.

You can use the default settings for the rest. The user guide has detailed explanations of each, we have selected the most common and general settings for now.

62. Click OK.
After a bit of computation, you should get a PERMANOVA results sheet. The resultant data sheet starts with a summary of what you did to your dataset, and what type of factors you have, and how they were nested. Next, and most notable, you will find the PERMANOVA table of results. You can read this just like you would read an ANOVA table output. To better understand the calculations and logic refer to the user manual.
Here we see that “Location” was a significant predictor of the fish assemblages, suggesting significantly different assemblages exist within each village location, when looking at all transects together, regardless of reef type or MPA status. This is somewhat surprising considering our initial look at the MDS plot did not reveal easily interpretable differences. Nonetheless, the formal test of significance is our most thorough evidence.

Second, once location is accounted for, we also see that “Reef type” is a significant predictor of fish assemblages, and the higher F-statistic suggests its greater influence compared with “Location” alone. This is not surprising either as our initial investigation of the MDS plot also suggested this.

Third, we see that MPA status did not consistently predict any variance in fish biomass. Again, given what we found out in Exercise 3 and 4, where we noted that some MPA’s were indeed successful and others not as much, this is expected, especially when looking at all of them together.

Finally, and notable, there was a significant amount of variance explained by “Site”. This means that in the majority of instances sites within specific “Reef types”, and within a specific “MPA status”, can be quite different. Thus, it would be incorrect to lump the data from the two sites together to judge MPA status. Rather, we should consider each site independently.

Below, the table of results, you can find descriptions of the numerical models that best fit our dataset. Last, the final “Estimates of components of variation” table shows us what the relative influence of each variable is, similar to estimates of individual ANOVA sum of square means. Individually, you can see the greatest components of variation exist at the “Site” and “Reef type” level, again supporting our initial MDS plot analysis. The user manual can help to understand these computational terms better, here we highlight the bottom-line findings and follow logical steps suggested by our sequential analysis.

So, what do we know?

There is a lot of variation among individual sites even if they are in the same “Location”, “Reef Type”, and “MPA” status. We might not desire to combine data from sites to judge a higher-order variable such as “MPA” status. However, the experimental design was set up to do this, recall “Site” was selected to be a random factor. So, we will proceed with our experimental design, keeping our knowledge gained in mind.

63. Go back to our “Bray-Curtis similarity” sheet.

We are ready to do a pairwise comparison to learn about the success of MPA status for each location and reef type, separately.

64. From the “PERMANOVA” menu
65. Select “PERMANOVA”
a. Change our “Test” to “Pair-wise”

66. From the drop down menu below, select “MPA(Reeftype(Location))”

67. Click OK.

68. Confirm the second PERMANOVA results sheet below.

Here we can see the results of the pair-wise comparisons. The box above highlights the first pair-wise comparison from inside of Village “D”, on the “Inner Reefs”, and we can see that a non-significant t-statistic and P-value emerged.

We can continue to scroll down and view each of the pair-wise results, however none are significant. We have a good idea as to why this is, and that is due to the “Site” level variation that exists. Lets confirm this.

69. Go back to your “Bray-Curtis similarity” sheet.

70. Go to the PERMANOVA menu
 a. Select “PERMANOVA”.

71. Select pair-wise
 a. This time in the drop down box select “Sites”.

72. Click OK.
Note: When the warning box appears you can click OK, we are well aware of your study design and we simply wish to view and understand the results so we can best move forward.

73. Confirm the third PERMANOVA sheet.

![PERMANOVA output](image)

PERMANOVA
Permutational MANOVA

<table>
<thead>
<tr>
<th>Resemblance worksheet</th>
<th>Bray-Curtis similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>Similarity</td>
</tr>
<tr>
<td>Selection</td>
<td>A1</td>
</tr>
<tr>
<td>Transform</td>
<td>Log(X+1)</td>
</tr>
<tr>
<td>Permutation</td>
<td>S17 Bray-Curtis similarity</td>
</tr>
</tbody>
</table>

Sum of squares type: Type III (partial)
Fixed effects sum to zero for mixed terms
Permutation method: Permutation of residuals under a reduced model
Number of permutations: 999

Factors

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Type</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Lo</td>
<td>Random</td>
<td>5</td>
</tr>
<tr>
<td>Reef Type</td>
<td>Re</td>
<td>Fixed</td>
<td>2</td>
</tr>
<tr>
<td>MPA</td>
<td>NP</td>
<td>Fixed</td>
<td>2</td>
</tr>
<tr>
<td>Site</td>
<td>S1</td>
<td>Random</td>
<td>32</td>
</tr>
</tbody>
</table>

PAIR-WISE TESTS

Term: 'Si(MP(Re(Lo)))'

Within level 'D' of factor 'Location'
Within level 'Inner' of factor 'Reef type'
Within level 'Yes' of factor 'MPA'
 Unique

<table>
<thead>
<tr>
<th>Groups</th>
<th>t</th>
<th>P(perm)</th>
<th>perms</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
<td>1.5671</td>
<td>0.043</td>
<td>126</td>
</tr>
</tbody>
</table>

Denominators

<table>
<thead>
<tr>
<th>Groups</th>
<th>Denominator Den. df</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
<td>1*Res</td>
</tr>
</tbody>
</table>

Average Similarity between/within groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>t</th>
<th>P(perm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>32.372</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>33.973</td>
<td>37.013</td>
</tr>
</tbody>
</table>

Within level 'D' of factor 'Location'
Within level 'Inner' of factor 'Reef type'
Within level 'No' of factor 'MPA'
 Unique

<table>
<thead>
<tr>
<th>Groups</th>
<th>t</th>
<th>P(perm)</th>
<th>perms</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A review of these site comparisons reveals that almost all pair-wise comparisons are significant. This confirms our thoughts that “Site” level variation is the greatest, and even stronger than MPA status. While clearly we expected some site-level variation, we also expected that some of the MPA’s might have a stronger influence on the fish biomass.

We have to be careful how we interpret these results. We can think of several reasons as to why our results came about, ranging from data-collector variance (i.e., different people collecting data from different locations), number and choice of indicator species, number, length, and width of transects, quality of the data collection, and most importantly, the length of time any particular site has been an established and enforced MPA.

Graphical interpretations:

Our last exercise here will be to produce an informative MDS summary plot for one MPA to highlight our findings and provide guidance for future data analyses you will undertake.

74. Click onto our “log-transformed” sheet.
75. Click on the “Select” menu,
 a. Check “Factor level”.
 b. In the drop down menu highlight “Combined name” and
 c. Click on the “Levels” box.

We will only consider village “M”, and the “Outer” reefs in both MPA status.

76. In the “Include” dialog box select “MOuterYesMI3”,
 “MOuterYesMI4”, “MOuterNoMO3”, “MOuterNoMO4”.
77. Confirm on image to the right.
78. Click OK in all dialog boxes.
You should now have a subset of your desired sample transects.

79. Next, under “**Analyse**”,
 a. Go to “**Resemblance**” and
 b. Create a **Bray-Curtis similarity matrix**.

80. While keeping your matrix sheet active,
 a. Go to “**Analyse**” again and
 b. Select MDS plot.

81. **Click** OK for the default settings.

82. From the graph page, select “**Data labels & symbols**”
 a. Uncheck the “**Plot**” box for labels.
 b. On the right, select “**Combined name**” from the dropdown menu
 c. Click OK
 d. Confirm your informative plot.

![MDS plot diagram with combined names and different symbols for transect labels.](image-url)
From this MDS plot it appears there are strong differences between individual sites, but also between inside and outside the MPA's. However, we have to consider how these MDS plots are made before we wonder why non-significant findings were made in our PERMANOVA above. MDS plots use non-parametric rank ordering of the inter-site differences. Meaning, rather than using the actual distances reported in the Bray-Curtis similarity matrix between any two sites, they simply rank the inter-site differences and capture the relative spread in two-dimensional space. The non-parametrical statistical test associated with this is the ANOSIM, described in Exercise 7. Just as an exercise let's run this test now.

83. Highlight your "Resem1" similarity matrix associated with this plot.

84. Go to the “Analyse” menu and
 a. Scroll down to the ANOSIM.

85. Select a “one way” design
 a. Set “Factor A” to “MPA”. (This will let us evaluate significant differences between all sites located within MPA’s and all sites located outside of MPA’s)

86. Click OK

87. Confirm.
The first graph that appears shows the variation in the permutated R values that were calculated, typically a frequency distribution centered around 0 is desired to show that the procedure was successful.

88. **Click** on the **ANOSIM** spreadsheet on top of this graph page
 a. **Scroll down** to the results for the “Global Test”.

ANOSIM

Analysis of Similarities

One-Way Analysis

Resemblance worksheet

Name: Resem

Data type: Similarity

Selection: All

Factor Values

Factor: MPA

Yes

No

Factor Groups

Sample: MPA

S91: Yes

S92: Yes

S93: Yes

S94: Yes

S95: Yes

S96: Yes

S97: Yes

S98: Yes

S99: Yes

S100: Yes

S111: No

S112: No

S113: No

S114: No

S115: No

S116: No

S117: No

S118: No

S119: No

S120: No

Global Test

Sample statistic (Global R): 0.537

Significance level of sample statistic: 0.14

Number of permutations: 999 (Random sample from 52378)

Number of permuted statistics greater than or equal to Global R: 0

Outputs

Plot: Greys
You can see our R-statistic is 0.537, and P-value is 0.1% or 0.001. The guidance materials in the PRIMER book describes how to interpret significance using ANOSIM. Without getting into details provided there, the guidance suggests that any R-statistic above 0.5 can be considered statistically significant. Thus, the ANOSIM detects significant differences between MPA status that the PERMANOVA did not. We should again understand this is due to the non-parametric ranking procedure.

Our last procedure here will be to prepare a PCO plot, rather than a MDS plot. PCO, or Principal Coordinate Ordination is a parametrical approach to produce informative plots such as MDS, using the actual values of the Bray-Curtis similarity matrix.

89. Highlight the “Resem1” similarity matrix used with our ANOSIM.
90. Click on the PERMANOVA menu
91. Scroll down to PCO.
92. Keep all default settings
93. Click OK.
94. From the graph page, select “Data labels & symbols”.
 a. Uncheck the “Plot” box for labels.
 b. On the right, select “Combined name” from the dropdown menu.
95. Click OK
96. Confirm your informative plot.
We can see clear similarities between our PCO plot and our MDS plot. To better understand why we didn’t get significant findings in our PERMANOVA you can envision the two data clouds circled above. These represent the two datasets we wish to detect significant differences in. The average radius of these circles represents the “component of variation” or basically the variance in the multivariate data. This is the dashed black line above with a “CV” next to it. These can be interpreted like standard deviation bars on our graphs. If the black dash line is longer that the mean distance between the two center points of our circle, the PERMANOVA will most likely show a non-significant result. Also different from the MDS plot, you can see numerical values on the X and Y axes.

The last clear message we can learn through our visualization of the PCO plot is that it seems the MPA status is having an impact on the fish assemblages here. However, you can see the high inter-site variation between the two sites in the MPA boundary: 1) “MOuterYesMI3”, the green plus signs, and 2) “MOuterYesMI4”, the blue X. It appears both sites, individually, would be significantly different from the reference sites, but when combining the data from these sites to test for MPA effectiveness, too much variation is introduced.

Clearly our summary provides a wealth of information to inform the monitoring and management programs of Pohnpei. Some clear suggestions to the management community are that the MPA’s have a mixed success, and trends vary within each village. Even at sites where current improvements are noted, the results are not yet significant. This may be due to the confidence in our monitoring data, the amount of time since the MPA was established, or the level of compliance with the no-take fishing policy. For the monitoring program these results suggest potential changes to their sampling design and/or methodologies. It seems very important to maintain the same data collector when conducting fish surveys. Similar, there may be a desire to expand data collection efforts to include all food fish, rather than the select indicator species.

A last note is that there are several ways in which these data could have been analyzed using PERMANOVA. We might want to consider further tests at the individual site level, rather than grouping the sites to determine whether or not MPA are successful. Clearly this would be a positive next step, but entails somewhat of a revision of the ecological sampling plan. These are all terrific points for monitoring programs to discuss with each other and with scientific advisors.

End of Exercise 8